Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-23T19:42:50.030Z Has data issue: false hasContentIssue false

Petrogenetic significance of LA-ICP-MS trace-element data on quartz from the Borborema Pegmatite Province, northeast Brazil

Published online by Cambridge University Press:  05 July 2018

H. Beurlen*
Affiliation:
Federal University of Pernambuco (UFPE) Department of Geology; Rua Acadêmico Hélio Ramos s.n., 50740- 530, Recife, Pernambuco, Brazil
A. Müller
Affiliation:
Geological Surveyof Norway, Leiv Eirikssons vei 39, 7491-Trondheim, Norway
D. Silva
Affiliation:
Instituto de Geociências, Universidade de Campinas (UNICAMP), Cidade Univesitária Zeferino Vaz, 13083-970- Campinas, São Paulo, Brazil
M. R. R. Da Silva
Affiliation:
Federal University of Pernambuco (UFPE) Department of Geology; Rua Acadêmico Hélio Ramos s.n., 50740- 530, Recife, Pernambuco, Brazil

Abstract

Quartz from different zones within five granitic pegmatites of the rare-element class from the Borborema Pegmatite Province in northeast Brazil were analysed for fourteen trace elements using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The concentrations of Li (6—150 ppm), B (1—9 ppm) and Ge (1—23 ppm) in quartz show a positive correlation with Al (30—770 ppm). The concentrations of these elements increase from the border zone to the quartz core of pegmatites of the spodumene or lepidolite subtypes. The Ge concentrations in the quartz core are the highest so far reported in igneous quartz. In the less evolved pegmatites of the beryl-columbite subtype, the Al, Li, B, and Ge concentrations in quartz from all zones remain at the same level as the border and wall zones. The Ti concentrations in quartz from the core of the more evolved pegmatites are below 3 ppm (with Al >250 ppm), contrasting with 7—25 ppm (with Al <280 ppm) in samples from the border and wall zones of the less evolved and more evolved pegmatites. The concentrations of Al. Li, B, Ge, and Ti in quartz are therefore confirmed as good indicators of the degree of magma fractionation and analyses of pegmatite quartz cores can be used for exploration purposes to distinguish pegmatites with high metallogenic potential. Atoms of Li and Al are incorporated into quartz such that Li/Al ranges between 0.75 and 1.0. This suggests a coupled substitution of the form Si4+ ↔ (Li+ + Al3+). The other elements analysed either showed an erratic distribution (e.g. Be and P) or were below the respective limits of detection (Na, K, Rb, Ca, Sr, Mn, Fe) in most samples.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araújo, M.N.C., Vasconcelos, P.M., Silva, F.C.A., Jardim de Sá, E.F. and , J.M. (2005) 40Ar/39Ar geochronologyof gold mineralization in Brasiliano strike-slip shear zones in the Borborema province, NE Brazil. Journal of South American Earth Sciences, 19, 445-460.CrossRefGoogle Scholar
Baumgartner, R., Moritz, R., Romer, R. and Sallet, R. (2006) Mineralogyand U–Pb geochronologyof beryl and columbo–tantalite pegmatites in the Seridópegmatite district, northeastern Brazil. The Canadian Mineralogist, 44, 69-86.CrossRefGoogle Scholar
Beurlen, H., Da Silva, M.R.R. and Castro, C. (2001) Fluid inclusion microthermometryin Be-Ta-(Li-Sn)-bearing pegmatites from the Borborema Province, Northeast Brazil. Chemical Geology, 173, 107-123.CrossRefGoogle Scholar
Beurlen, H., Soares, D.R., Thomas, R., Prado-Borges, L.E. and Castro, C. (2005) Mineral chemistryof tantalate species new in the Borborema Pegmatitic Province, Northeast Brazil. Anais da Academia Brasileira de Ciências, 77, 169-182.CrossRefGoogle Scholar
Beurlen, H., Barreto, S.B., Silva, D., Wirth, R. and Olivier, P. (2007) Titanian ixiolite and niobian rutile intergrowths from the Borborema Pegmatitic Province, northeastern Brazil. The Canadian Mineralogist, 45, 1367-1387.CrossRefGoogle Scholar
Beurlen, H., Da Silva, M.R.R., Thomas, R., Soares, D.R. and Olivier, P. (2008) Nb–Ta–(Ti–Sn)–oxide mineral chemistryas tracers of rare-element granitic pegmatite fractionation in the Borborema Province, northeastern Brazil. Mineralium Deposita, 43, 207-228.CrossRefGoogle Scholar
Beurlen, H., Rhede, D., Da Silva, M.R.R., Thomas, R. and Guimarães, I.P. (2009) Petrography, geochemistryand chemical electron microprobe U-Pb-Th dating of pegmatitic granites in the Borborema Pegmatite Province, NE-Brazil: a possible source of the rare element granitic pegmatites. Terrae, 6, 59-71.Google Scholar
Brasil (1998) Mapa geológico do Estado do Rio Grande do Norte. DNPM/CPRM/UFRN, Companhia de Pesquisa de Recursos Minerais – Serviço Geológico do Brasil (CPRM), Recife, Brasil.Google Scholar
Brasil (2002) Mapa geológico do Estado da Paraíba. DNPM/CPRM/ CDRM, Companhia de Pesquisa de Recursos Minerais – Serviço Geológico do Brasil (CPRM), Recife, Brasil.Google Scholar
Breiter, K. and Müller, A. (2009) Evolution of raremetal granitic magmas documented byquar tz chemistry. European Journal of Mineralogy, 21, 335-346.CrossRefGoogle Scholar
Černý, P. (1989a) Characteristics of pegmatite deposits of tantalum. Pp. 195-239 in: Lanthanides, tantalum, niobium (Moeller, P., Černý, P. and Saupé, F., editors). Society for Geology Applied to Mineral Deposits, Wurzburg, Germany and Springer, Berlin, Heidelberg, New York, 380 pp.CrossRefGoogle Scholar
Černý, P. (1989b) Exploration strategyand methods for pegmatite deposits of tantalum. Pp. 274-302 in: Lanthanides, tantalum, niobium (Moeller, P., P., Černý and F., Saupé, editors). Society for Geology Applied to Mineral Deposits, Wurzburg, Germany and Springer, Berlin, Heidelberg, New York, 380 pp.CrossRefGoogle Scholar
Černý, P. (1991) Rare element granitic pegmatites. Part 1: anatomyand internal evolution of pegmatite deposits. Geosciences Canada, 18, 49-67.Google Scholar
Černý, P. and Ercit, T.S. (2005) The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43, 2005-2026.CrossRefGoogle Scholar
Černý, P., Masau, M., Goad, B.E. and Ferreira, K. (2005) The Greer Lake leucogranite, Manitoba, and the origin of lepidolite-subtype granitic pegmatites. Lithos, 80, 305-321.CrossRefGoogle Scholar
Cunha e Silva, J. (1981) Formação polimetalífera da região da Borborema, Estados do Rio Grande do Norte e Paraíba. Unpublished report, Companhia de Pesquisa de Recursos Minerais – Serviço Geológico do Brasil (CPRM), Recife, Brazil, 135 pp.Google Scholar
Da Silva, M.R.R., Höll, R. and Beurlen, H. (1995) Borborema Pegmatitic Province: geological and geochemical characteristics. Journal of South American Earth Sciences, 8, 355-364.CrossRefGoogle Scholar
Dennen, W.H. (1966) Stoichiometric substitution in natural quartz. Geochimica et Cosmochimica Acta, 30, 1235-1241.CrossRefGoogle Scholar
Dennen, W.H. and Blackburn, W.H. (1970) Aluminium in Quartz as a Geothermometer. Contributions to Mineralogy and Petrology, 27, 332-342.CrossRefGoogle Scholar
Ebert, H. (1970) The Precambrian geologyof the “Borborema” belt (States of Paraíba and Rio Grande do Norte) and the origin of its mineral provinces. Geologische Rundschau (International Journal of Earth Sciences), 59, 1292-1326.CrossRefGoogle Scholar
Flem, B. and Bédard, L.P. (2002) Determination of trace elements in BCS CRM 313/1 (BAS) and NIST SRM 1830 byinductivelycoupl ed plasma-mass spectrometryand instrumental neutron activation analysis. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 26, 287-300.CrossRefGoogle Scholar
Flem, B., Larsen, R.B., Grimstvedt, A. and Mansfeld, J. (2002) In situ analysis of trace elements in quartz by using laser ablation inductivelycoupled plasma mass spectrometry. Chemical Geology, 182, 237-247.CrossRefGoogle Scholar
Gao, S., Liu, X., Yuan, H., Hattendorf, B., Günther, D., Chen, L. and Hu, S. (2002) Determination of fortytwo major and trace elements in USGS and NIST SRM glasses bylaser ablation-inductively coupled plasma-mass spectrometry. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 26, 181-196.CrossRefGoogle Scholar
Götze, J., Plötze, M. and Trautmann, T. (2005) Structure and luminescence characteristics of quartz from pegmatites. American Mineralogist, 90, 3-21.CrossRefGoogle Scholar
Günther, D. and Heinrich, C.A. (1999) Enhanced sensitivityin LA-ICP-MS using helium-argon mixtures as aerosol carrier. Journal of Analytical Atomic Spectrometry, 14, 1369-1374.CrossRefGoogle Scholar
Horn, I., Hinton, R.W., Jackson, S.E. and Longerich, H.P. (1997) Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe inductivelycoupled plasma mass spectrometry (LAM-ICP-MS): a comparison with secondaryion mass spectrometry(SIMS). Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 21, 191-203.CrossRefGoogle Scholar
Jardim de Sá, E.F., Legrand, J.M. and McReath, I. (1981) Estratigrafia de rochas granitóides na Região do Seridó (RN-PB) com base em critérios estruturais. Revista Brasileira de Geociências, 11, 50-57.CrossRefGoogle Scholar
Johnston, W.D., Jr., (1945) Beryl-tantalite pegmatites of northeastern Brazil. Geological Society of America Bulletin, 56, 1015-1070.CrossRefGoogle Scholar
Larsen, R.B. (2002) The distribution of rare elements in K-feldspar as an indicator of petrogenetic processes in granitic pegmatites: examples from two pegmatite fields in southern Norway. The Canadian Mineralogist, 40, 137-151.CrossRefGoogle Scholar
Larsen, R.B., Henderson, I. and Ihlen, P.M. (2004) Distribution and petrogenetic behaviour of trace elements in granitic pegmatite quartz from south Norway. Contributions to Mineralogy and Petrology, 147, 615-628.CrossRefGoogle Scholar
London, D. (2009) The origin of primarytextures in granitic pegmatites. The Canadian Mineralogist, 47, 697-724.CrossRefGoogle Scholar
Morteani, G. and Graup, R. (1989) Geochemical evaluation of the tantalum potential of pegmatites. Pp. 303-310 in: Lanthanides, Tantalum, and Niobium: Mineralogy, Geochemistry, Characteristics of Primary Ore Deposits, Prospecting, Processing and Applications (Möller, P., Černý, P. and Saupé, F., editors). Society for Geology Applied to Mineral Deposits, Wurzburg, Germany and Springer, Berlin, Heidelberg, New York, 380 pp.CrossRefGoogle Scholar
Müller, A., Ihlen, P.M. and Kronz, A. (2008a) Quartz chemistryin polygeneration Sveconorwegian pegmatites, Froland, Norway. European Journal of Mineralogy, 20, 447-463.CrossRefGoogle Scholar
Müller, A., Wiedenbeck, M., Flem, B. and Schiellerup, H. (2008b) Refinement of phosphorus determination in quartz by LA-ICP-MS through defining new reference material values. Geostandards and Geoanalytical Research, 32, 361-376.CrossRefGoogle Scholar
Pearce, N.J.G., Perkins, W.T., Westgate, J.W., Gorton, M.P., Jackson, S.E., Neal, C.R. and Chenery, S.P. (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter: The Journal of Geostandards and Geoanalysis, 21, 115-144.CrossRefGoogle Scholar
Rolff, P.M.A. (1946) Minerais dos pegmatitos da Borborema. Rio de Janeiro. Departamento Nacional da Produção Mineral, Boletim, 78, 23-76.Google Scholar
Roy, P.L., Dottin, O. and Madon, H.L. (1964) Estudo dos pegmatitos do Rio Grande do Norte e da Paraíba. Brasil, Superintendência do Desenvolvimento do Nordeste (SUDENE), Série Geologia Economica, 1, 1-124.Google Scholar
Schrön, W., Schmädicke, E., Thomas, R. and Schmidt, W. (1988) Geochemische Untersuchungen an Pegmatitquarzen. Zeitschrift der Geologischen Wissenschaften, 16, 229-244.Google Scholar
Soares, D.R. (2004) Contribuição à petrologia de pegmatitos mineralizados em elementos raros e elbaítas gemológicas da Província Pegmatítica da Borborema, NE-Brasil. [Contribution to the petrologyof rare-element and gemological elbaite-bearing pegmatites of the Borborema Pegmatite Province, NE-Brazil]. Unpublished PhD Thesis, Federal University of Pernambuco-UFPE, Brazil.Google Scholar
Soares, D.R., Beurlen, H., Barreto, S.B., Da Silva, M.R.R., Ferreira, A.C.M. (2008) Compositional variation of tourmaline-group minerals in the Borborema Pegmatite Province, northeastern Brazil. The Canadian Mineralogist, 46, 1097-1116.CrossRefGoogle Scholar
Thomas, R., Webster, J.D. and Davidson, P. (2006a) Understanding pegmatite formation: the melt and fluid inclusion approach. Pp. 189-210 in: Melt Inclusions in Plutonic Rocks (Webster, J.D., editor). Short Course 36, Mineralogical Association of Canada, Ottawa, Ontario, Canada, 248 pp.Google Scholar
Thomas, R., Webster, J.D., Rhede, D., Seifert, W., Förster, H.J., Heinrich, W. and Davidson, P. (2006b) The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessoryminerals. Lithos, 91, 137-149.CrossRefGoogle Scholar
Van Schmus, W.R., Brito Neves, B.B., Williams, I.S., Hackspacher, P.C., Fetter, A.H., Dantas, E.L. and Babinski, M. (2003) The Seridó Group of NE Brazil, a late Neoproterozoic pre- to syn-collisional basin in West Gondwana: insights from SHRIMP U–Pb detrital zircon ages and Sm–Nd crustal residence (TDM) ages. Precambrian Research, 127, 287-327.CrossRefGoogle Scholar
Wark, D.A. and Watson, E.B. (2006) TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152, 743-754.CrossRefGoogle Scholar
Webber, K.L., Simmons, W.B., Falster, A.U. and Foord, E.E. (1999) Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California. American Mineralogist, 84, 708-717.CrossRefGoogle Scholar