Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-27T12:18:46.360Z Has data issue: false hasContentIssue false

Potassic-jeanlouisite from Leucite Hill, Wyoming, USA, ideally K(NaCa)(Mg4Ti)Si8O22O2: the first species of oxo amphibole in the sodium–calcium subgroup

Published online by Cambridge University Press:  28 June 2019

Roberta Oberti*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sede secondaria di Pavia, via Ferrata 1, I-27100 Pavia, Italy
Massimo Boiocchi
Affiliation:
Centro Grandi Strumenti, Università di Pavia, via Bassi 21, I-27100 Pavia, Italy
Frank C. Hawthorne
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
Giancarlo Della Ventura
Affiliation:
Dipartimento di Scienze, Università di Roma Tre, largo S. Leonardo Murialdo 1, I-00146, Rome, Italy INFN-LNF, Via E. Fermi 40, I-00044 Frascati, Italy
Gunnar Färber
Affiliation:
Bornsche Strasse 9, D 39326 Samswegen, Germany
*
*Author for correspondence: Roberta Oberti, Email: oberti@crystal.unipv.it

Abstract

Potassic-jeanlouisite, ideally K(NaCa)(Mg4Ti)Si8O22O2, is the first characterised species of oxo amphibole related to the sodium–calcium group, and derives from potassic richterite via the coupled exchange CMg–1W${\rm OH}_{{\rm \ndash 2}}^{\ndash}{} ^{\rm C}{\rm Ti}_1^{{\rm 4 +}} {} ^{\rm W}\!{\rm O}_2^{2\ndash} $. The mineral and the mineral name were approved by the International Mineralogical Association Commission on New Minerals, Nomenclature and Classification, IMA2018-050. Potassic-jeanlouisite was found in a specimen of leucite which is found in the lava layers, collected in the active gravel quarry on Zirkle Mesa, Leucite Hills, Wyoming, USA. It occurs as pale yellow to colourless acicular crystals in small vugs. The empirical formula derived from electron microprobe analysis and single-crystal structure refinement is: A(K0.84Na0.16)Σ1.00B(Ca0.93Na1.02Mg0.04${\rm Mn}_{{\rm 0}{\rm. 01}}^{2 +} $)Σ2.00C(Mg3.85${\rm Fe}_{{\rm 0}{\rm. 16}}^{2 +} $Ni0.01${\rm Fe}_{{\rm 0}{\rm. 33}}^{3 +} {\rm V}_{{\rm 0}{\rm. 01}}^{3 +} $Ti0.65)Σ5.01T(Si7.76Al0.09Ti0.15)Σ8.00O22W[O1.53F0.47]Σ2.00. The holotype crystal is biaxial (–), with α = 1.674(2), β = 1.688(2), γ = 1.698(2), 2Vmeas. = 79(1)° and 2Vcalc. = 79.8°. The unit-cell parameters are a = 9.9372(10), b = 18.010(2), c = 5.2808(5) Å, β = 104.955(2)°, V = 913.1(2) Å3, Z = 2 and space group C2/m. The strongest eight reflections in the powder X-ray pattern [d values (in Å) (I) (hkl)] are: 2.703 (100) (151); 3.380 (87) (131); 2.541 (80) ($\bar 2$02); 3.151 (70) (310); 3.284 (68) (240); 8.472 (59) (110); 2.587 (52) (061); 2.945 (50) (221,$\bar 1$51).

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J.B. (1992) EXCALIBR II. Zeitschrift für Kristallographie, 199, 185196.Google Scholar
Bruker, (2003) SAINT Software Reference Manual. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Cannillo, E., Germani, G. and Mazzi, F. (1983) New crystallographic software for Philips PW1100 single crystal diffractometer. CNR Centro di Studio per la Cristallografia Strutturale, Internal Report 2.Google Scholar
Della Ventura, G., Robert, J.-L. and Bény, J.-M. (1991) Tetrahedrally coordinated Ti4+ in synthetic Ti–rich potassic richterite: evidence from XRD, FTIR, and Raman study. American Mineralogist, 76, 11341140.Google Scholar
Della Ventura, G., Robert, J.-L., Bény, J.-M., Raudsepp, M. and Hawthorne, F.C. (1993) The OH–F substitution in Ti-rich potassium-richterites: Rietveld structure refinement and FTIR and micro-Raman spectroscopic studies of synthetic amphiboles in the system K2O–Na2O–CaO–MgO–SiO2–TiO2–H2O–HF. American Mineralogist, 78, 980987.Google Scholar
Krause, L., Herbst–Irmer, R., Sheldrick, G.M. and Stalkeand, D. (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. Journal of Applied Crystallography, 48, 310.Google Scholar
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: Crystal Chemistry. Pp. 154 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy and Geochemistry, 67. The Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Hawthorne, F.C., Oberti, R., Cannillo, E., Sardone, N., Zanetti, A., Grice, J.D. and Ashley, P.M. (1995 a) A new anhydrous amphibole from the Hoskins mine, Grenfell, New South Wales, Australia: Description and crystal structure of ungarettiite, NaNa2 (${\rm Mn}_2^{2 +}$Mn3+3)Si8O22O2. American Mineralogist, 80, 165172.Google Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995 b) Site populations in minerals: terminology and presentation of results of crystal–structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Hawthorne, F.C., Cooper, M.A., Grice, J.D. and Ottolini, L. (2000) A new anhydrous amphibole from the Eifel region, Germany: description and crystal structure of obertiite, NaNa2(Mg3Fe3+Ti4+)Si8O22O2. American Mineralogist, 85, 236241.Google Scholar
Hawthorne, F.C., Ball, N.A. and Czamanske, G.K. (2010) Ferro-obertiite, NaNa2${\rm Fe}_3^{2 +} $Fe3+Ti)Si8O22O2, a new amphibole species of the amphibole group from Coyote Peak, Humboldt County, California. The Canadian Mineralogist, 48, 301306.Google Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.Google Scholar
Holtstam, D., Cámara, F., Skogby, H., Karlsson, A. and Langhof, J. (2019) Description and recognition of potassic-richterite, an amphibole supergroup mineral from the Pajsberg ore field, Värmland, Sweden. Mineralogy and Petrology, 113, 716.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part lV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Oberti, R., Ungaretti, L., Cannillo, E. and Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles: I. Four– and six–coordinated Ti in richterites. European Journal of Mineralogy, 4, 425439.Google Scholar
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007) Long–range order in amphiboles. Pp. 125172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy and Geochemistry, 67. The Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N.A. and Blass, G. (2017 a) Ferri-obertiite from the Rothenberg quarry, Eifel volcanic complex, Germany: mineral data and crystal-chemistry of a new amphibole end-member. Mineralogical Magazine, 81, 641651.Google Scholar
Oberti, R., Della Ventura, G., Boiocchi, M., Zanetti, A. and Hawthorne, F.C. (2017 b) The crystal-chemistry of oxo-mangani-eakeite and mangano-mangani-ungarettiite from the Hoskins mine and their impossible solid–solution: An XRD and FTIR study. Mineralogical Magazine, 81, 707722.Google Scholar
Oberti, R., Boiocchi, M., Zema, M., Hawthorne, F.C., Redhammer, G.J., Susta, U. and Della Ventura, G. (2018 a) Understanding the peculiar HT behavior of riebeckite: expansivity, deprotonation, Fe-oxidation and a novel cation disorder scheme. European Journal of Mineralogy, 30, 437449.Google Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C., Della Ventura, G. and Färber, G. (2018 b) Potassic-jeanlouisite, IMA 2018-050. CNMNC Newsletter No. 45, October 2018, page 1227; Mineralogical Magazine, 82, 12251232.Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.Google Scholar
Tait, K.T., Hawthorne, F.C., Grice, J.D., Ottolini, L. and Nayak, V.K. (2005) Dellaventuraite, NaNa2(MgMn3+2Ti4+Li)Si8O22O2, a new anhydrous amphibole from the Kajlidongri Manganese Mine, Jhabua District, Madhya Pradesh, India. American Mineralogist, 90, 304309.Google Scholar
Tiepolo, M., Zanetti, A. and Oberti, R. (1999) Detection, crystal–chemical mechanisms and petrological implications of [6]Ti4+ partitioning in pargasite and kaersutite. European Journal of Mineralogy, 11, 345354.Google Scholar
Supplementary material: File

Oberti et al. supplementary material

Oberti et al. supplementary material 1

Download Oberti et al. supplementary material(File)
File 15.7 KB