Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-02T13:38:14.529Z Has data issue: false hasContentIssue false

Re-investigation of ‘minasgeraisite-(Y)’ from the Jaguaraçu pegmatite, Brazil and high-temperature crystal chemistry of gadolinite-supergroup minerals

Published online by Cambridge University Press:  17 March 2023

Oleg S. Vereshchagin*
Affiliation:
Institute of Earth Sciences, Saint Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia
Liudmila A. Gorelova
Affiliation:
Institute of Earth Sciences, Saint Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia
Anastasia K. Shagova
Affiliation:
Institute of Earth Sciences, Saint Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia
Anatoly V. Kasatkin
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninskiy Prospect 18, 119071 Moscow, Russia
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, CZ 611 37 Brno, Czech Republic
Vladimir N. Bocharov
Affiliation:
Geomodel Resource Center, Saint Petersburg State University, Ulyanovskaya Str. 1, 198504 St. Petersburg, Russia
Natalia S. Vlasenko
Affiliation:
Geomodel Resource Center, Saint Petersburg State University, Ulyanovskaya Str. 1, 198504 St. Petersburg, Russia
Michaela Vašinová Galiová
Affiliation:
Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200 Brno, Czech Republic BIC Brno, Purkyňova 125, 612 00, Brno, Czech Republic
*
*Corresponding author: Oleg S. Vereshchagin; Email: o.vereshchagin@spbu.ru

Abstract

The chemical composition (including B, Be and Li), the Raman spectrum and the crystal-structure evolution (at the temperature range 27–1000°C) of a Mn-bearing, Bi-rich gadolinite-subgroup mineral from the Jaguaraçu Pegmatite, Brazil (type-locality of minasgeraisite-(Y)) was studied. Elemental mapping revealed that the crystal investigated has complex chemical zonation with various Bi (~8–24 wt.% Bi2O3), Ca (~8–10 wt.% CaO) and Y (~11–17 wt.% Y2O3) content. The sample investigated has all the specific features of the chemical composition of minasgeraisite-(Y), except Ca excess and, thus, should be considered as hingganite-(Y). The Raman spectrum of the sample under study has bands at 140, 179, 243, 350, 446, 519, 559, 625, 902, 973, 3224, 3353, 3532 and 3763 cm–1, and is similar to that of hingganite-(Y) / -(Nd). Crystal-structure refinement confirmed that the crystal in question should be considered as hingganite-(Y) and is in line with the previously obtained data on gadolinite-subgroup minerals from the Jaguaraçu Pegmatite. High-temperature single-crystal X-ray diffraction studies revealed that the mineral starts to decompose above 800°C. We can conclude that beryllosilicates are most stable at high-temperature conditions within the gadolinite supergroup and that species with a higher M-site occupancy have higher stability upon heating.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: G. Diego Gatta

References

Agilent (2012) CrysAlisPRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.Google Scholar
Allaz, J.M., Smyth, J.R., Henry, R.E., Stern, C.R., Persson, P., Ma, J.J. and Raschke, M.B. (2020) Beryllium-silicon disorder and rare earth crystal chemistry in gadolinite from the White Cloud pegmatite, Colorado, USA. The Canadian Mineralogist, 58, 829845.Google Scholar
Bačík, P., Fridrichová, J., Uher, P., Pršek, J. and Ondrejka, M. (2014) The crystal chemistry of gadolinite-datolite group silicates. The Canadian Mineralogist, 52, 625642.Google Scholar
Bačík, P., Miyawaki, R., Atencio, D., Camara, F. and Fridrichová, J. (2017) Nomenclature of gadolinite supergroup. European Journal of Mineralogy, 29, 10671082.Google Scholar
Belolipetsky, A.P., Pletneva, N.I., Denisov, A.P. and Kulchitskaya, E.A. (1968) Accessory gadolinites from pegmatites and granite veins on Kola Peninsula. Pp. 162–173 in: Mineralogical Materials of Kola Peninsula (Belkov, I. V., editor), Vol. 6. Nauka, Leningrad, Russia [in Russian].Google Scholar
Bubnova, R.S. and Filatov, S.K. (2008) Strong anisotropic thermal expansion in borates. Physica Status Solidi, 245, 24692476.Google Scholar
Bubnova, R.S., Firsova, V.A. and Filatov, S.K. (2013) Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (Theta to Tensor-TTT). Glass Physics and Chemistry, 39, 347350.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2018) Cation order in the crystal structure of ‘minasgeraisite-(Y)’. Mineralogical Magazine, 82, 301312.Google Scholar
Cooper, M.A., Hawthorne, F.C., Miyawaki, R. and Kristiansen, R. (2019) Cation order in the crystal structure of ‘Ca-hingganite-(Y)'. The Canadian Mineralogist, 57, 371382.Google Scholar
Demartin, F., Pilati, T., Diella, V., Gentile, P. and Gramaccioli, C.M. (1993) A crystal-chemical investigation of Alpine gadolinite. The Canadian Mineralogist, 30, 127136.Google Scholar
Demartin, F., Minaglia, A. and Gramaccioli, C.M. (2001) Characterization of gadolinite-group minerals using crystallographic data only: the case of hingganite-(Y) from Cuasso al Monte, Italy. The Canadian Mineralogist, 39, 11051114.Google Scholar
Filatov, S.K. (1990) High Temperature Crystal Chemistry. Nedra, Leningrad, Russia, 288 pp. [in Russian].Google Scholar
Foit, F.F. and Gibbs, G.V. (1975) Refinement of NiYb2Be2Si2O10, a gadolinite-type structure. Zeitschrift für Kristallographie, 141, 375386.Google Scholar
Földvári, M. (2011) Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice. Geological Institute of Hungary, Budapest, Hungary, 180 pp.Google Scholar
Foord, E.E., Gaines, R.V., Crock, J.G., Simmons, W.B. and Barbosa, C.P. (1986) Minasgeraisite, a new member of the gadolinite group from Minas Gerais, Brazil. American Mineralogist, 71, 603607.Google Scholar
Gibson, S.J. and Ehlmann, A.J. (1970) Annealing characteristics of metamict gadolinite from Rode Ranch Texas. American Mineralogist, 55, pp. 288291.Google Scholar
Gorelova, L.A., Vereshchagin, O.S., Cuchet, S., Shilovskikh, V. and Pankin, D. (2020) Low-Temperature Crystal Chemistry of Hingganite-(Y), from the Wanni Glacier, Switzerland. Minerals, 10(322), 116.Google Scholar
Gorelova, L.A., Panikorovskii, T.L., Pautov, L.A., Vereshchagin, O.S., Krzhizhanovskaya, M.G. and Spiridonova, D.V. (2021a) Temperature-versus compositional-induced structural deformations of gadolinite group minerals with various Be/B ratio. Journal of Solid State Chemistry, 299, 112.Google Scholar
Gorelova, L.A., Pakhomova, A.S., Krzhizhanovskaya, M.G., Pankin, D.V., Krivovichev, S.G., Dubrovinsky, L.S. and Kasatkin, A.V. (2021b) Crystal structure evolution of slawsonite SrAl2Si2O8 and paracelsian BaAl2Si2O8 upon compression and decompression. The Journal of Physical Chemistry C, 125, 1301413023.Google Scholar
Gorelova, L.A., Vereshchagin, O.S., Aslandukov, A., Aslandukova, A., Spiridonova, D.V., Krzhizhanovskaya, M.G., Kasatkin, A.V. and Dubrovinsky, L.S. (2022) Hydroxylherderite (Ca2Be2P2O8(OH)2) stability under extreme conditions (up to 750 °C / 100 GPa). Journal of the American Ceramic Society, 106, https://doi.org/10.1111/jace.18923.Google Scholar
Grew, E. S. and Hazen, R.M. (2014) Beryllium mineral evolution. American Mineralogist, 99, 9991021.Google Scholar
Habel, A. and Habel, M. (2009) Minasgeraisit-(Y) aus dem Krennbruch in Matzersdorf/Tittling. Mineralien-Welt, 20(5), 5153 [in German].Google Scholar
Hazen, R.M. and Finger, L.W. (1982) Comparative Crystal Chemistry: Temperature, Pressure, Composition and the Variation of Crystal Structure. John Wiley and Sons Ltd.: London, UK, 231 pp.Google Scholar
Ito, J. (1965) The synthesis of gadolinite. Proceedings of the Japan Academy, 41, 404407.Google Scholar
Ito, J. (1966) A note on gadolinite synthesis. Proceedings of the Japan Academy, 42, 634635.Google Scholar
Ito, J. (1967) Synthesis of calciogadolinite. American Mineralogist, 52, 15231527.Google Scholar
Ito, J. and Hafner, S.S. (1974) Synthesis and study of gadolinites. American Mineralogist, 59, 700708.Google Scholar
Kasatkin, A.V., Nestola, F., Škoda, R., Chukanov, N.V., Agakhanov, A.A., Belakovskiy, D.I., Lanza, A., Holá, M. and Rumsey, M.S. (2020) Hingganite-(Nd), Nd2□Be2Si2O8(OH)2, a new gadolinite-supergroup mineral from Zagi Mountain, Pakistan. The Canadian Mineralogist, 58, 549562.Google Scholar
Krzhizhanovskaya, M.G., Gorelova, L.A., Bubnova, R.S. Pekov, I.V. and Krivovichev, S.V. (2018) High-temperature crystal chemistry of layered calcium borosilicates: CaBSiO4(OH) (datolite), Ca4B5Si3O15(OH)5 (‘bakerite’) and Ca2B2SiO7 (synthetic analogue of okayamalite). Physics and Chemistry of Minerals, 45, 463473.Google Scholar
Lyalina, L.M., Selivanova, E.A., Savchenko, Y.E., Zozulya, D.R. and Kadyrova, G.I. (2014) Minerals of the gadolinite-(Y)-hingganite-(Y) series in the alkali granite pegmatites of the Kola Peninsula. Geology of Ore Deposits, 56, 675684. https://doi.org/10.1134/S1075701514080042.Google Scholar
Malczewski, D. and Janeczek, J. (2002) Activation energy of annealed metamict gadolinite from 57Fe Moessbauer spectroscopy. Physics and Chemistry of Minerals, 29, 226232.Google Scholar
Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta, 114/115, 363376.Google Scholar
Novák, M., Kadlec, T. and Gadas, P. (2013) Geological position, mineral assemblages and contamination of granitic pegmatites in the Moldanubian Zone, Czech Republic; examples from the Vlastějovice region. Journal of Geosciences, 58(1), 2147.Google Scholar
Paulmann, C., Zietlow, P., McCammon, C., Salje, E.K.H. and Bismayer, U. (2019) Annealing of metamict gadolinite-(Y): X-ray diffraction, Raman, IR, and Moessbauer spectroscopy. Zeitschrift für Kristallographie, 234, 587593.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.Google Scholar
Sheldrick, G.M. (2015) Shelxt – integrated space-group and crystal-structure determination. Acta Crystallographica, A71 38.Google Scholar
Škoda, R., Plášil, J., Jonsson, E., Čopjaková, R., Langhof, J. and Galiová, M.V. (2015) Redefinition of thalénite-(Y) and discreditation of fluorthalénite-(Y): A re-investigation of type material from the Österby pegmatite, Dalarna, Sweden, and from additional localities. Mineralogical Magazine, 79, 965983.Google Scholar
Škoda, R., Plášil, J., Čopjaková, R., Novák, M., Jonsson, E., Galiová, M. V. and Holtstam, D. (2018) Gadolinite-(Nd), a new member of the gadolinite supergroup from the Fe-REE deposits of Bastnas-type, Sweden. Mineralogical Magazine, 82, 133145.Google Scholar
Voloshin, A.V., Pakhomovsky, Ya.A. and Sorokhtina, N.V. (2002) Compositions of minerals from gadolinite group in amazonite randpegmatites of Kola Peninsula. Vestnik MGTU, 5, 6170.Google Scholar
Zajzon, N., Szakáll, S., Kristály, F., Váczi, T. and Fehér, B. (2015) Gadolinite-bearing NYF-type pegmatite from Sukoró, Velence Hills, Hungary. Acta Mineralogica-Petrographica, 9, 75.Google Scholar
Supplementary material: File

Vereshchagin et al. supplementary material

Vereshchagin et al. supplementary material

Download Vereshchagin et al. supplementary material(File)
File 1.7 MB