Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-04T02:38:59.178Z Has data issue: false hasContentIssue false

Thermal behaviour of filatovite – a rare aluminoarsenate mineral of the feldspar group

Published online by Cambridge University Press:  27 February 2024

Liudmila A. Gorelova*
Affiliation:
Saint Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Oleg S. Vereshchagin
Affiliation:
Saint Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Vladimir N. Bocharov
Affiliation:
Saint Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Nadezhda V. Potekhina (née Shchipalkina)
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Elena S. Zhitova
Affiliation:
Institute of Volcanology and Seismology FEB RAS, Boulevard Piip 9, 683006 Petropavlovsk-Kamchatsky, Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
Corresponding author: Liudmila A. Gorelova; Email: l.gorelova@spbu.ru

Abstract

The high-temperature behaviour of a feldspar-group mineral, filatovite (with the simplified formula: K(Al,Zn)2(As,Si)2O8), in which the Al:As:Si ratio is close to 2:1:1), was studied by in situ high-temperature single-crystal X-ray diffraction and in situ high-temperature (hot stage) Raman spectroscopy up to 600°C. In the temperature range studied (25–600°С) filatovite does not undergo any phase transition, whereas at 800°C it decomposes to X-ray amorphous phase(s). The evolution of 12 main Raman bands was traced during heating, which indicates a gradual change in the crystal structure. The thermal expansion coefficients of filatovite demonstrate a sharply anisotropic character of thermal expansion: the maximal expansion is close to the a axis (α11 = 17.7(1) × 106 °C–1), whereas along the b and c axes the thermal expansion coefficients are close to zero. Such behaviour is typical for minerals with a similar crystal structure topology; it indicates the dominant role of structure geometry in the thermal behaviour of the mineral.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Oleg I Siidra

References

Agilent Technologies (2012) CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, UK.Google Scholar
Aliatis, I., Lambruschi, E., Mantovani, L., Bersani, D., Ando, S., Gatta, G.D., Gentile, P., Salvioli-Mariani, E., Prencipe, M., Tribauldino, M. and Lottici, P.P. (2015) A comparison between ab initio calculated and measured Raman spectrum of triclinic albite (NaAlSi3O8). Journal of Raman Spectroscopy, 46, 501508.CrossRefGoogle Scholar
Angel, R.J., Sochalski-Kolbus, L.M. and Tribaudino, M. (2012) Tilts and tetrahedra: the origin of the anisotropy of feldspars. American Mineralogist, 97, 765778.CrossRefGoogle Scholar
Armbruster, T., Bühler, C., Graeser, S., Stalder, H.A. and Amthauer, G. (1988) Cervandonite-(Ce), (Ce,Nd,La)(Fe3+,Fe2+,Ti4+,Al)3SiAs(Si,As)O13, a new alpine fissure mineral. Schweizerische Mineralogische und Petrographische Mitteilungen, 68, 125132.Google Scholar
Barresi, A.A., Orlandi, P. and Pasero, M. (2007) History of ardennite and the new mineral ardennite-(V). European Journal of Mineralogy, 19, 581587.CrossRefGoogle Scholar
Bokii, G.B. and Borutskii, B.Ye. (editors) (2003) Minerals. Vol. 5. Tectosilicates. Pt. 1: Silicates with interrupted framework, feldspar minerals. Nauka, Moscow, 583 pp. [in Russian]Google Scholar
Botto, I.L. and Baran, E.J. (1982) Characterization of the monoclinic rare earth orthoarsenates. Journal of Less Common Metals, 83, 255261.CrossRefGoogle Scholar
Bubnova, R.S., Firsova, V.A. and Filatov, S.K. (2013) Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (Theta to Tensor-TTT). Glass Physics and Chemistry, 39, 347350.CrossRefGoogle Scholar
Christy, A.G. and Gatedal, K. (2005) Extremely Pb-rich rock-forming silicates including a beryllian scapolite and associated minerals in a skarn from Långban, Värmland, Sweden. Mineralogical Magazine, 69, 9951018.CrossRefGoogle Scholar
Cook, D.K. (1973) Recent work on the minerals of Franklin and Sterling Hill, New Jersey. Mineralogical Record, 4, 6266.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2012) Crystal structure of kraisslite, Zn3(Mn,Mg)25(Fe3+,Al)(As3+O3)2[(Si,As5+)O4]10(OH)16, from the Sterling Hill mine, Ogdensburg, Sussex County, New Jersey, USA. Mineralogical Magazine, 76, 28192836.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zusmann, J. (2001) Rock-Forming Minerals. Vol. 4A. Framework Silicates: Feldspars. The Geological Society, London, 973 pp.Google Scholar
Demartin, F., Gramaccioli, C.M. and Graeser, S. (2008) The crystal structure of cervandonite-(Ce), an interesting example of As3+-Si diadochy. The Canadian Mineralogist, 46, 423430.CrossRefGoogle Scholar
Donnay, G. and Allmann, R. (1968) Si3O10 groups in the crystal structure of ardennite. Acta Crystallographica, B24, 845855.CrossRefGoogle Scholar
Dove, M.T., Cool, T., Palmer, D.C., Putnis, A., Salje, H. and Winkler, B. (1993) On the role of Al–Si ordering in the cubic-tetragonal phase transition of leucite. American Mineralogist, 78, 486492.Google Scholar
Dove, M.T., Pride, A.K.A. and Keen, D.A. (2000) Phase transitions in tridimite studied using ‘Rigid Unit Mode’ theory, reverse Monte Carlo methods and molecular dynamics simulations. Mineralogical Magazine, 64, 267283.CrossRefGoogle Scholar
Downs, R.T. (2000) Analysis of harmonic displacement factors. Pp. 61187 in: High-Temperature and High Pressure Crystal Chemistry (Hazen, R.M. and Downs, R.T., editors). Reviews in Mineralogy and Geochemistry, Vol. 41. Mineralogical Society of America, Geochemical Society, Washington DC.CrossRefGoogle Scholar
Dowty, E. (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals - I. calculations on ideal silicate-aluminate-germanate structural units. Physics and Chemistry of Minerals, 14, 542552.CrossRefGoogle Scholar
Dunn, P.J. (1995) Franklin and Sterling Hill, New Jersey: The World's Most Magnificent Mineral Deposits. Franklin-Ogdensburg Mineralogical Society, New Jersey, USA, 755 pp.Google Scholar
Dunn, P.J. and Nelen, J.A. (1980) Kraisslite and mcgovernite: new chemical data. American Mineralogist, 65, 957960.Google Scholar
Filatov, S.K. (1990) High-Temperature Crystal Chemistry. Nedra, Leningrad, Russia, 288 pp. [in Russian].Google Scholar
Filatov, S.K., Krivovichev, S.V., Burns, P.C. and Vergasova, L.P. (2004) Crystal structure of filatovite, K((Al,Zn)2(As,Si)2O8), the first arsenate of the feldspar group. European Journal of Mineralogy, 16, 537543.CrossRefGoogle Scholar
Gorelova, L.A. (2023) Phase transformations in feldspar group minerals with paracelsian topology under high temperature and high pressure. Russian Geology and Geophysics, 64, 112.CrossRefGoogle Scholar
Gorelova, L., Vereshchagin, O. and Kasatkin, A. (2021) Thermal expansion and polymorphism of slawsonite SrAl2Si2O8. Minerals, 11, 1150.CrossRefGoogle Scholar
Hawthorne, F.C. (2018) Long-range and short-range cation order in the crystal structures of carlfrancisite and mcgovernite. Mineralogical Magazine, 82, 11011118.CrossRefGoogle Scholar
Hawthorne, F.C., Abdu, Y.A., Ball, N.A. and Pinch, W.W. (2013) Carlfrancisite: Mn2+3(Mn2+,Mg,Fe3+,Al)42(As3+O3)2(As5+O4)4[(Si,As5+)O4]6[(As5+,Si)O4]2(OH)42, a new arseno-silicate mineral from the Kombat mine, Otavi Valley, Namibia. American Mineralogist, 98, 16931696.CrossRefGoogle Scholar
Henderson, C.M.B. (2021) Composition, thermal expansion and phase transitions in framework silicates: Revisitation and review of natural and synthetic analogues of nepheline-, feldspar- and leucite-mineral groups. Solids, 2, 149.CrossRefGoogle Scholar
Holtstam, D. and Langhof, J. (1999) Långban: The Mines, Their Minerals, Geology and Explorers. Raset Förlag, Chr. Weise Verlag, Munich and Swedish Museum of Natural History, Stockholm, 216 pp.Google Scholar
Hovis, G.L., Medford, A., Conlon, M., Tether, A. and Romanoski, A. (2010) Principles of thermal expansion in the feldspar system. American Mineralogist, 95, 10601068.CrossRefGoogle Scholar
Hovis, G.L., Morabito, J.R., Spooner, A., Mott, A., Person, E.L., Henderson, C.M.B., Roux, J. and Harlov, D. (2008) A simple predictive model for the thermal expansion of AlSi3 feldspars. American Mineralogist, 93, 15681573.CrossRefGoogle Scholar
Kotelnikov, A.R., Shchipalkina, N.V., Suk, N.I. and Ananiev, V.V. (2019) Synthesis of As-bearing feldspar. Proceedings of the X International Symposium “Mineral diversity: research and preservation”. Sofia, October 2019.Google Scholar
Krivovichev, S.V. (2020) Feldspar polymorphs: Diversity, complexity, stability. Zapiski RMO Proceedings of Russian Mineralogical Society, 149, 1666.CrossRefGoogle Scholar
Menyalov, I.A., Nikitina, L.P. and Shapar’, V.N. (1980) Geochemical Features of Exhalations of the Great Tolbachik Fissure Eruption. Nauka, Moscow, 236 pp. [in Russian].Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Moore, P.B. (1970) Mineralogy and chemistry of Langban-type deposits in Bergslagen, Sweden. Mineralogical Record, 1, 154172.Google Scholar
Moore, P.B. and Ito, J. (1978) Kraisslite, a new platy arsenosilicate from Sterling Hill, New Jersey. American Mineralogist, 63, 938940.Google Scholar
Openshaw, R.E., Henderson, C.M.B. and Brown, W.L. (1979) A room-temperature phase transition in maximum microcline. Physics and Chemistry of Minerals, 5, 95104.CrossRefGoogle Scholar
Pakhomova, A., Simonova, D., Koemets, I., Koemets, E., Aprilis, G., Bykov, M., Gorelova, L., Fedotenko, T., Prakapenka, V. and Dubrovinsky, L. (2020) Polymorphism of feldspars above 10 GPa. Nature Communications, 11, 2721.CrossRefGoogle ScholarPubMed
Palache, C. (1941) Contributions to the mineralogy of Sterling Hill, New Jersey: Morphology of graphite, arsenopyrite, pyrite and arsenic. American Mineralogist, 26, 709717.Google Scholar
Palache, C. and Bauer, L.H. (1927) McGovernite, a new mineral from Sterling Hill, New Jersey. American Mineralogist, 12, 373374.Google Scholar
Palmer, D.C., Dove, M.T., Ibberson, R.M. and Powell, B.M. (1997) Structural behavior, crystal chemistry, and phase transitions in substituted leucite: High resolution neutron powder diffraction studies. American Mineralogist, 82, 1629.CrossRefGoogle Scholar
Parsons, I. (1994) Feldspars and Their Reactions. Kluwer Academic Publishers: Amsterdam, The Netherlands, 650 pp.CrossRefGoogle Scholar
Pasero, M. (2024) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). http://cnmnc.units.it/ [Accessed February, 2024].Google Scholar
Pekov, I.V., Koshlyakova, N.N., Zubkova, N.V., Lykova, I.S., Britvin, S.N., Yapaskurt, V.O., Agakhanov, A.A., Shchipalkina, N.V., Turchkova, A.G. and Sidorov, E.G. (2018) Fumarolic arsenates — a special type of arsenic mineralization. European Journal of Mineralogy, 30, 305322.CrossRefGoogle Scholar
Raade, G., Johnsen, O., Erambert, M. and Petersen, O.V. (2007) Hundholmenite-(Y) from Norway — a new mineral species in the vicanite group: descriptive data and crystal structure. Mineralogical Magazine, 71, 179192.CrossRefGoogle Scholar
Sarp, H., Černý, R., Pushcharovsky, D.Y., Schouwink, P., Teyssier, J., Williams, P.A., Babalik, H. and Mari, G. (2014) La barrotite, Cu9Al(HSiO4)2[(SO4)(HAsO4)0.5](OH)12⋅8H2O, un nouveau minéral de la mine de Roua (Alpes-Maritimes, France). Riviéra Scientifique, 98, 322.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic study of inter atomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Britvin, S.N., Koshlyakova, N.N. and Sidorov, E.G. (2020a) Arsenic and phosphorus in feldspar framework: sanidine – filatovite solid solution series from fumarolic exhalations of the Tolbachik volcano, Kamchatka, Russia. Physics and Chemistry of Minerals, 47, 1.CrossRefGoogle Scholar
Shchipalkina, N.V., Pekov, I.V., Koshlyakova, N.N., Britvin, S.N., Zubkova, N.V., Varlamov, D.A. and Sidorov, E.G. (2020b) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 2: Tectosilicates. European Journal of Mineralogy, 32, 121136.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112.Google Scholar
Smith, J.V. (1978) Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. II. Perpendicular and near-perpendicular linkages from 4.82, 3.122 and 4.6.l2 nets. American Mineralogist, 63, 960969.Google Scholar
Smith, J.V. and Brown, W.L. (1988) Feldspar Minerals. Vol. 1. Crystal Structures, Physical, Chemical and Microstructural Properties. Springer Verlag, Berlin-Heidelberg, 828 pp.Google Scholar
Smith, J.V. and Rinaldi, F. (1962) Framework structures formed from parallel four- and eight-membered rings. Mineralogical Magazine, 33, 202212.CrossRefGoogle Scholar
Vereshchagin, O.S., Britvin, S.N., Perova, E.N., Brusnitsyn, A.I., Polekhovsky, Y.S., Shilovskikh, V.V., Bocharov, V.N., van der Burgt, A., Cuchet, S. and Meisser, N. (2019) Gasparite-(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, Central Kazakhstan, and metamorphic rocks of the Wanni glacier, Switzerland. American Mineralogist, 104, 14691480.CrossRefGoogle Scholar
Vergasova, L.P., Krivovichev, S.V., Britvin, S.N., Burns, P.C. and Ananiev, V.V. (2004) Filatovite, K[(Al, Zn)2(As,Si)2O8], a new mineral species from the Tolbachik volcano, Kamchatka peninsula, Russia. European Journal of Mineralogy, 16, 533536.CrossRefGoogle Scholar
von Lasaulx, A. (1872) Ardennit, ein neues Mineral. Neues Jahrbuch für Mineralogie, Geologie und Palaontologie, 1872, 930934.Google Scholar
Supplementary material: File

Gorelova et al. supplementary material

Gorelova et al. supplementary material
Download Gorelova et al. supplementary material(File)
File 954.3 KB