Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-08T19:56:08.539Z Has data issue: false hasContentIssue false

Triclinic titanite from the Heftetjern granitic pegmatite, Tørdal, southern Norway

Published online by Cambridge University Press:  05 July 2018

A. J. Lussier
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
M. A. Cooper
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
F. C. Hawthorne*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
R. Kristiansen
Affiliation:
PO Box 32, N-1650 Sellebakk, Norway

Abstract

Two crystals from a sample of titanite from the Heftetjern granitic pegmatite, Tørdal, southern Norway, were extracted for structure analysis and shown to have triclinic symmetry. Unit-cell parameters are as follows: a = 7.0696(4) Å, b = 8.7167(5) Å, c = 6.5695(3) Å, α = 89.7372(11)°, β = 113.7607(10)°, γ = 90.2929(13)°, V = 370.52(6) Å3 for one crystal and a = 7.0612(5) Å, b = 8.7102(6) Å, c = 6.5628(4) Å, α = 89.7804(16)°, β = 113.7713(13)°, γ = 90.2502(16)°, V = 369.39(7) Å3 for the other. The interaxial angles α and γ deviate from the value of 90° required for monoclinic symmetry by ~200–250 standard deviations. The single-crystal X-ray intensities were averaged in both monoclinic and triclinic Laue symmetries, giving R(merge) values of ~14% and ~1.3% respectively. For both crystals, more than 50 reflections with I > 3σI violated the criterion for the presence of the a-glide required for monoclinic A2/a symmetry. Both crystals were refined in the space group A with Z = 4, and final R1 indices are 4.4% and 4.7% (wR2 = 8.4 and 8.9%) respectively. The composition of one crystal was determined by electron microprobe analysis: Ca[Ti0.623Ta0.105Nb0.018Al0.137Fe0.0463+Sn0.0834+]Σ=1.012(SiO4)O. The characteristic corner-sharing [MO5] chains of identical octahedra observed in monoclinic titanite become chains of alternating M(1) and M(2) octahedra of different size, with the stronger X-ray scattering constituents concentrated at the M(2) site. Short-range bond-valence considerations suggest that the M cations will order as Al—O—Ta in adjacent octahedra, and when present in sufficient amounts, will couple along the chain to break long-range monoclinic symmetry.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergstøl, S. and Juve, G. (1988) Scandian ixiolite, pyrochlore and bazzite in granite pegmatite in Tørdal, Telemark, Norway. A contribution to the mineralogy and geochemistry of scandium and tin. Mineralogy and Petrology, 38, 229—243.CrossRefGoogle Scholar
Bergstøl, S., Jensen, B.B. and Neumann, H. (1977) Tveitite, a new calcium yttrium fluoride. Lithos, 10, 80—87.CrossRefGoogle Scholar
Brigatti, M.E., Caprilli, E., Mottana, A. and Poppi, L. (2004) Nb-containing titanite: new data and crystal structure refinement. Neues Jahrbuch für Mineralogie Monatshefte, 117—126.CrossRefGoogle Scholar
Brown, I.D. (1981) The bond valence method. An empirical approach to chemical structure and bonding. Pp. 1—30 in: Structure and Bonding in Crystals, Vol. 2 (M. O’Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford, UK.Google Scholar
Ćerny, P. (1992) Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Applied Geochemistry, 7, 393—416.Google Scholar
Ćerny, P. and Riva di Sanseverino, L. (1972) Comments on crystal chemistry of titanite. Neues Jahrbuch für Mineralogie Monatshefte, 97—103.Google Scholar
Ćerny, P., Novak, M. and Chapman, R. (1995) The Al(Nb,Ta)Ti-2 substitution in titanite: the emergence of a new species? Mineralogy and Petrology, 52, 61—73.CrossRefGoogle Scholar
Chakhmouradian, A.R. (2004) Crystal chemistry and paragenesis of compositionally-unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia. American Mineralogist, 89, 1752—1762.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Zaitsev, A.N. (2002) Calcite-amphibole-clinopyroxene from the Afrikanda Complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites III. Silicate minerals. The Canadian Mineralogist, 40, 1347—1374.CrossRefGoogle Scholar
Clark, A.M. (1974) A tantalum-rich variety of sphene. Mineralogical Magazine, 39, 605—607.CrossRefGoogle Scholar
Cooper, M.A., Hawthorne, F.C., Ball, N.A., Ćerny, P. and Kristiansen, R. (2006) Oftedalite, (Sc,Ca,Mn2+)2K(Be,Al)3Si12O30, a new member of the milarite group from the Heftetjern pegmatite, Tørdal, Norway: description and crystal structure. The Canadian Mineralogist, 44, 943—949.CrossRefGoogle Scholar
Ellemann-Olesen, R. and Malcherek, T. (2005) Temperature and composition dependence of structural phase transition in Ca(TixZr1-x)OGeO4 . American Mineralogist, 90, 687—694.CrossRefGoogle Scholar
Franz, G. and Spear, F.S. (1985) Aluminous titanite (sphene) from the eclogitic zone, South-Central Tauern Window, Austria. Chemical Geology, 50, 33—46.CrossRefGoogle Scholar
Groat, L.L., Hawthorne, F.C., Carter, R.T. and Ercit, T.S. (1985) Tantalian niobian titanite from the Irgon Claim, Southeastern Manitoba. The Canadian Mineralogist, 23, 569—571.Google Scholar
Hawthorne, F.C. Groat, L.A., Raudsepp, M., Ball, N.A., Kimata, M., Spike, F.D., Gaba, R., Halden, N.M., Lumpkin, G.R., Ewing, R.C., Greegor, R.B., Lytle, F.W., Ercit, T.S., Rossman, G.R., Wicks, F.J., Ramik, R.A., Sherriff, B.L., Fleet, M.E. and McCammon, C. (1991) Alpha-decay damage in titanite. American Mineralogist, 76, 370—396.Google Scholar
Higgins, J.B. and Ribbe, P.H. (1976) The crystal chemistry and space groups of natural and synthetic titanites. American Mineralogist, 61, 878—888.Google Scholar
Higgins, J.B. and Ribbe, P.H. (1977) The structure of malayaite, CaSnOSiO4, a tin analog of titanite. American Mineralogist, 62, 801—806.Google Scholar
Hollabaught, C.L. and Foit, F.F., Jr. (1984) The crystal structure of an Al-rich titanite from Grisons, Switzerland. American Mineralogist, 69, 725—732.Google Scholar
Hughes, J.M., Bloodaxe, E.S., Hanchar, J.M. and Foord, E.E. (1997) Incorporation of rare earth elements in titanite: stabilization of the A2/a dimorph by creation of antiphase boundaries. American Mineralogist, 82, 512—516.CrossRefGoogle Scholar
International Tables for X-ray Crystallography (1992) V.C. Dordrecht, Kluwer Academic Publishers.Google Scholar
Jambor, J. (1990) Scandium microlite. American Mineralogist, 76, 668.Google Scholar
Juve, G. and Bergstøl, S. (1990) Cesian bazzite in granite pegmatite in Tørdal, Telemark, Norway. Mineralogy and Petrology, 43, 131136.CrossRefGoogle Scholar
Kolitsch, U., Kristiansen, R., Raade, G. and Tillmanns, E. (2009) Heftetjernite, a new scandium mineral from the Heftetjern pegmatite, Tørdal, Norway. European Journal of Mineralogy (in press).CrossRefGoogle Scholar
Kristiansen, R. (1998) H0ydalen litium-pegmatitt, Tørdal i Telemark. Stein, 25, 21 —30. (in Norwegian).Google Scholar
Kristiansen, R. (2003) Scandium-mineraler i Norge. Stein, 30, 14—23. (in Norwegian).Google Scholar
Kristiansen, R. (2005) Milarittgruppens mineraler i Norge. Norsk Bergverksmuseum Skrifter, 30, 21—29.(in Norwegian).Google Scholar
Kristiansen, R. (2009) A unique assemblage of scandium-bearing minerals from the Heftetjern- pegmatite, Tørdal, south Norway. Norsk Bergverksmuseum, Skrifter, 41, 75—104.Google Scholar
Kunz, M., Xirouchakis, D., Wang, Y., Parise, J.B. and Lindlsey, D.H. (1997) Structural investigations along the join CaTiOSiO4-CaSnOSiO4. Schweizerische Mineralogische und Petrographische Mitteilungen, 77, 111.Google Scholar
Liferovich, R. and Mitchell, R. (2005a) Composition and paragenesis of Na-, Nb-, and Zr-bearing titanite from Khibina, Russia, and crystal-structure data for synthetic analogs. The Canadian Mineralogist, 43, 795—812.CrossRefGoogle Scholar
Liferovich, R. and Mitchell, R. (2005b) Crystal chemistry of titanite-structured compounds: the CaTi1—xZrxOSiO4 (x 4 0.,5) series. Physics and Chemistry of Minerals, 32, 40—51.CrossRefGoogle Scholar
Liferovich, R. and Mitchell, R. (2005c) Solid solution of rare earth elements in synthetic titanite: a reconnaissance study. Mineralogy and Petrology, 83, 271—282.CrossRefGoogle Scholar
Liferovich, R. and Mitchell, R. (2006a) Tantalumbearing titanite: synthesis and crystal structure data. Physics and Chemistry of Minerals, 33, 73—83.CrossRefGoogle Scholar
Liferovich, R. and Mitchell, R. (2006b) Solid solutions of niobium in synthetic titanite. The Canadian Mineralogist, 44, 1089—1097.CrossRefGoogle Scholar
London, D. (2008) Pegmatites. The Canadian Mineralogist Special Publication 10, Mineralogical Association of Canada, Quebec, Canada.Google Scholar
Malcherek, T. and Ellemann-Olesen, R. (2005) CaZrGeO5 and the triclinic instability of the titanite structure type. Zeitschrift für Kristallographie, 220, 712—716.Google Scholar
Mongiorgi, R. and Riva di Sanseverino, L.R. (1968) A reconsideration of the structure of titanite, CaTiOSiO4. Mineralogica Petrographica Acta, 14, 123141.Google Scholar
Neumann, H. (1960) Apparent ages of Norwegian minerals and rocks. Norsk Geologisk Tidsskrift, 40, 173191.Google Scholar
Oberti, R., Rossi, G. and Smith, D.C. (1985) X-ray crystal structure refinement studies of the TiO > Al(OH,F) exchange in high-aluminum sphenes. Terra Cognita, 5, 428 (abstract).+Al(OH,F)+exchange+in+high-aluminum+sphenes.+Terra+Cognita,+5,+428+(abstract).>Google Scholar
Oberti, R., Smith, D.C., Rossi, G. and Caucia, F. (1991) The crystal-chemistry of high-aluminum titanites. European Journal of Mineralogy, 3, 777—792.CrossRefGoogle Scholar
Oftedal, I. (1943) Scandium as a geologic thermometer. Norsk Geologisk Tidsskrift, 23, 202213.Google Scholar
Oftedal, I. (1956) Contribution to the geochemistry of granite pegmatites. Norsk Geologisk Tidsskrift, 36, 141150.Google Scholar
Paul, B.J., Ćerny, P., Chapman, R. and Hinthorne, J.R. (1981) Niobian titanite from the Huron claim pegmatite, Southeastern Manitoba. The Canadian Mineralogist, 19, 549—552.Google Scholar
Raade, G. and Erambert, M. (1999) An intergrowth of scandiobabingtonite and cascandite from the Heftetjern granite pegmatite, Norway. Neues Jahrbuch für Mineralogie Monatshefte, 545—550.Google Scholar
Raade, G. and Kristiansen, R. (2000 a) Mineralogy and geochemistry of the Heftetjern granite pegmatite, Tørdal: a progress report. Norsk Bergverksmuseum Shift, 17, 19—25.Google Scholar
Raade, G. and Kristiansen, R. (2000 b) Scandium enrichment in the Heftetjern granite pegmatite, Telemark, Norway. 4th International Conference on Mineralogy and Museums, Melbourne, December 4—7; Program and Abstract Volume, 83.Google Scholar
Raade, G. and Kristiansen, R. (2003) Scandium as a trace element in the Heftetjern pegmatite minerals. SCANDIUM 2003, An International Symposium on the Mineralogy and Geochemistry of Scandium, Oslo, Norway, August 16—22, 2003; NGF Abstracts and Proceedings No. 2 (G. Raade and T.V. Segalstad, editors.), 36—37Google Scholar
Raade, G. and Segalstad, T.V. (2003) SCANDIUM 2003, An International Symposium on the Mineralogy and Geochemistry of Scandium, Oslo, Norway, August 16—22, 2003; NGF Abstracts and Proceedings No. 2 (G. Raade and T. V. Segalstad, editors.), 91 pp.Google Scholar
Raade, G., S^b0, P.Chr., Austrheim, H. and Kristiansen, R. (1993) Kuliokite-(Y) and its alteration products kainosite-(Y) and kamphaugite-(Y) from granite pegmatite in Tørdal, Norway. European Journal of Mineralogy, 5, 691—698.CrossRefGoogle Scholar
Raade, G., Ferraris, G., Gula, A., Ivaldi, G. and Bernhard, F. (2002) Kristiansenite, a new calcium- scandium-tin sorosilicate from granite pegmatite in Tørdal, Telemark, Norway. Mineralogy and Petrology, 75, 89—99.CrossRefGoogle Scholar
Raade, G., Bernhard, F. and Ottolini, L. (2004) Replacement textures involving four scandium silicate minerals in the Heftetjern granitic pegmatite, Norway. European Journal of Mineralogy, 16, 945—950.CrossRefGoogle Scholar
Rath, S., Kunz, M. and Miletich, R. (2003) Pressure- induced phase transition in malayaite, CaSnOSiO4. American Mineralogist, 88, 293—300.CrossRefGoogle Scholar
Ribbe, P.H. (1980) Titanite. Pp. 137 — 154 in: Orthosilicates (P.H. Ribbe, editor). Reviews in Mineralogy, 5, Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Russell, J.K., Groat, L.A. and Halleran, A.A.D. (1994) LREE-rich niobian titanite from Mount Bisson, British Columbia: Chemistry and exchange mechanisms. The Canadian Mineralogist, 32, 575—587.Google Scholar
Sahama, T.G. (1946) On the chemistry of mineral titanite. Comptes rendus Societe Geologique de Finlande, 19, 88120.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.CrossRefGoogle Scholar
Smith, D.C. (1981) The pressure and temperature dependence of Al-solubility in sphene in the system Ti-Al-Ca-Si-O-F. Progress in Experminetal Petrology, N.E.R.C. Publication Series, D-18, 193-197.Google Scholar
Speer, J.A. and Gibbs, G.V. (1976) The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites. American Mineralogist, 61, 238247.Google Scholar
Stauble, J. and Bayer, G. (1981) Titanit als mogliche Wirtstruktur zur Fixierung von Elementen and radioaktiven Abfallen. Naturwissenschaften, 68, 141.CrossRefGoogle Scholar
Taylor, M. and Brown, G.E. (1976) High-temperature structural study of the P21/a > A2/a phase transitions in synthetic titanite, CaTiSiO5. American Mineralogist, 61, 435447.Google Scholar
Zachariasen, W.H. (1930) The crystal structure of titanite. Zeitschrift für Kristallographie, 73, 717.Google Scholar