Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-09T07:12:06.667Z Has data issue: false hasContentIssue false

Anisotropic Optical Properties of 2D Silicon Telluride

Published online by Cambridge University Press:  14 April 2020

Romakanta Bhattarai
Affiliation:
Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA
Jiyang Chen
Affiliation:
Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA
Thang B. Hoang
Affiliation:
Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA
Jingbiao Cui
Affiliation:
Department of Physics, University of North Texas, Denton, TX 76201, USA
Xiao Shen*
Affiliation:
Department of Physics and Materials Science, University of Memphis, Memphis, TN 38152, USA
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Silicon telluride (Si2Te3) is a silicon-based 2D chalcogenide with potential applications in optoelectronics. It has a unique crystal structure where Si atoms form Si-Si dimers to occupy the “metal” sites. In this paper, we report an ab initio computational study of its optical dielectric properties using the GW approximation and the Bethe-Salpeter equation (BSE). Strong in-plane optical anisotropy is discovered. The imaginary part of the dielectric constant in the direction parallel to the Si-Si dimers is found to be much lower than that perpendicular to the dimers. The optical measurement of the absorption spectra of 2D Si2Te3 nanoplates shows modulation of the absorption coefficient under 90-degree rotation, confirming the computational results. We show the optical anisotropy originates from the particular compositions of the wavefunctions in the valence and conduction bands. Because it is associated with the Si dimer orientation, the in-plane optical anisotropy can potentially be dynamically controlled by electrical field and strain, which may be useful for new device design. In addition, BSE calculations reduce GW quasiparticle band gap by 0.3 eV in bulk and 0.6 eV in monolayer, indicating a large excitonic effect in Si2Te3. Furthermore, including electron-hole interaction in bulk calculations significantly reduces the imaginary part of the dielectric constant in the out-of-plane direction, suggesting strong interlayer exciton effect in Si2Te3 multilayers.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - SA
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike licence (http://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
Copyright
Copyright © Materials Research Society 2020

References

REFERENCES

Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A. Y., Feng, R., Dai, Z., Marchenkov, A. N., Conrad, E. H., First, P. N., and De Heer, W. A., J. Phys. Chem. B 108, 19912 (2004).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Zhang, Y., Tan, Y. W., Stormer, H. L., and Kim, P., Nature 438, 201 (2005).CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F., Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tománek, D., and Ye, P. D., ACS Nano 8, 4033 (2014).CrossRefGoogle Scholar
Buscema, M., Groenendijk, D. J., Blanter, S. I., Steele, G. A., Van Der Zant, H. S., and Castellanos-Gomez, A., Nano Lett . 14, 3347 (2014).CrossRefGoogle Scholar
Cudazzo, P., Tokatly, I. V., and Rubio, A., Phys. Rev. B 84, 085406 (2011).CrossRefGoogle Scholar
Mao, N., Tang, J., Xie, L., Wu, J., Han, B., Lin, J., Deng, S., Ji, Wei, Xu, Hua, Liu, Kaihui, Tong, Lianming, and Zhang, Jin, J. Am. Chem. Soc. 138, 300 (2015).CrossRefGoogle Scholar
Huang, L., Wu, F., and Li, J., J. Chem. Phys. 144, 114708 (2016).CrossRefGoogle Scholar
Zhang, E., Wang, P., Li, Z., Wang, H. F., Song, C. Y., Huang, C., Chen, Z.-G., Yang, L., Zhang, K. T., Lu, S. H., Wang, W. Y., Liu, S. S., Fang, H. H., Zhou, X. H., Yan, H. G., Zou, J., Wan, X. G., Hu, W. D., Zhou, P., and Xiu, F. X., ACS Nano 10, 8067 (2016).CrossRefGoogle Scholar
Huang, S., Tatsumi, Y., Ling, X., Guo, H., Wang, Z., Watson, G., Puretzky, A. A., Geohegan, D. B., Kong, J., Li, J., Yang, T., Saito, R., and Dresselhaus, M. S., ACS Nano 10, 8964 (2016).CrossRefGoogle Scholar
Song, Q. J., Pan, X. C., Wang, H. F., Zhang, K., Tan, Q. H., Li, P., Wan, Yi., Wang, Y. L., Xu, X. L., Lin, M. L., Wan, X. G., Song, F. Q., and Dai, L., Sci. Rep. 6, 29254 (2016).CrossRefGoogle Scholar
Yuan, H., Liu, X., Afshinmanesh, F., Li, W., Xu, G., Sun, J., Lian, B., Curto, A. G., Ye, G., Hikita, Y., Shen, Z., Zhang, S.-C., Chen, X., Brongersma, M., Hwang, H. Y., and Cui, Y., Nat. Nanotechnol. 10, 707 (2015).CrossRefGoogle Scholar
Li, D., Jussila, H., Karvonen, L., Ye, G., Lipsanen, H., Chen, X., and Sun, Z., Sci. Rep. 5, 15899 (2015).CrossRefGoogle Scholar
Zhou, J., Xu, H., Li, Y., Jaramillo, R., and Li, J., Nano Lett . 18, 7794 (2018).CrossRefGoogle Scholar
Keuleyan, S., Wang, M., Chung, F. R., Commons, J., and Koski, K. J., Nano Letters 15, 2285 (2015).CrossRefGoogle Scholar
Ploog, K., Stetter, W., Nowitzki, A., and Schönherr, E., Mater. Res. Bull. 11, 1147 (1976).CrossRefGoogle Scholar
Gregoriades, P. E., Bleris, G. L. and Stoemenos, J., Acta Crystallogr. Sect. B 39, 421 (1983).CrossRefGoogle Scholar
Shen, X., Puzyrev, Y. S., Combs, C., and Pantelides, S. T., Appl. Phys. Lett. 109, 113104 (2016).CrossRefGoogle Scholar
Wu, K., Sun, W., Jiang, Y., Chen, J., Li, L., Cao, C., Shi, S., Shen, X., and Cui, J., J. Appl. Phys. 122, 075701 (2017).CrossRefGoogle Scholar
Chen, J., Wu, K., Shen, X., Hoang, T. B., and Cui, J., J. Appl. Phys. 125, 024306 (2019).CrossRefGoogle Scholar
Wang, M., Lahti, G., Williams, D., and Koski, K. J., ACS Nano 12, 6163 (2018).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
Hedin, L., Phys. Rev. A 139, 796 (1965).CrossRefGoogle Scholar
Hybertsen, M. S., and Louie, S. G., Phys. Rev. B 34, 5390 (1986).CrossRefGoogle Scholar
Onida, G., Reining, L., and Rubio, A., Rev. Mod. Phys. 74, 601 (2002).CrossRefGoogle Scholar
Salpeter, E. E., and Bethe, H. A., Phys. Rev. 84, 1232 (1951).CrossRefGoogle Scholar
Albrecht, S., Reining, L., Del Sole, R., and Onida, G., Phys. Rev. Lett. 80, 4510 (1998).CrossRefGoogle Scholar
Rohlfing, M., and Louie, S. G., Phys. Rev. Lett. 81, 2312 (1998).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Zwick, U. and Rieder, K. H., Z. Physik B 25, 319 (1976).CrossRefGoogle Scholar
Ceballos, F., Bellus, M. Z., Chiu, H. Y., and Zhao, H., ACS Nano 8, 12717 (2014).CrossRefGoogle Scholar
Horng, J., Stroucken, T., Zhang, L., Paik, E. Y., Deng, H., and Koch, S. W., Phys. Rev. B 97, 241404 (2018).CrossRefGoogle Scholar