Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-02T11:04:47.325Z Has data issue: false hasContentIssue false

Millimetre-scale growth of single-wall carbon nanotube forests using an aluminium nitride catalyst underlayer

Published online by Cambridge University Press:  02 January 2019

Takashi Tsuji
Affiliation:
CNT –Application Research Centre, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Naoyuki Matsumoto
Affiliation:
CNT –Application Research Centre, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Hirokazu Takai
Affiliation:
ZEON Corporation, 1-6-2 Marunouchi Chiyoda-ku, Tokyo 100-8246, Japan
Shunsuke Sakurai
Affiliation:
CNT –Application Research Centre, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
Don N. Futaba*
Affiliation:
CNT –Application Research Centre, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
*
Get access

Abstract

We have demonstrated the high yield (∼900 μm) and highly single-wall selective (>95%) growth of carbon nanotube (CNT) forest using aluminium nitride (AlN) as a catalyst underlayer. Such high efficiency and single-wall selectivity have not been previously reported using this underlayer system. Evaluation with transmission electron microscopy showed that the average diameter of the grown carbon nanotubes was ∼3.0 nm, which is similar to those grown on alumina underlayers. In addition, characterization of the catalyst/underlayer system using atomic force microscopy and X-ray photoelectron spectroscopy suggests that neither Ostwald ripening along the surface nor catalyst subsurface diffusion into the AlN underlayer are severely occurring at the growth temperature, leading to the creation of the stable and dense small nanoparticle array to achieve an efficient growth of single-wall CNTs.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Murakami, Y., Chiashi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., and Maruyama, S., Chem. Phys. Lett. 385, 298 (2004).CrossRefGoogle Scholar
Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., and Iijima, S., Science 306, 1362 (2004).CrossRefGoogle Scholar
Xu, Y.-Q., Flor, E., Kim, M.J., Hamadani, B., Schmidt, H., Smalley, R.E., and Hauge, R.H., J. Am. Chem. Soc. 128, 6560 (2006).CrossRefGoogle Scholar
Futaba, D.N., Goto, J., Yamada, T., Yasuda, S., Yumura, M., and Hata, K., Carbon 48, 4542 (2010).CrossRefGoogle Scholar
Chen, G., Sakurai, S., Yumura, M., Hata, K., and Futaba, D.N., Carbon 107, 433 (2016).CrossRefGoogle Scholar
Kobashi, K., Ata, S., Yamada, T., Futaba, D.N., and Hata, K., Compos. Sci. Technol. 163, 10 (2018).CrossRefGoogle Scholar
Sakurai, S., Kamada, F., Kobashi, K., Futaba, D.N., and Hata, K., J. Am. Chem. Soc. 140, 1098 (2018).CrossRefGoogle Scholar
Izadi-najafabadi, A., Yamada, T., Futaba, D.N., Yudasaka, M., Takagi, H., Hatori, H., Iijima, S., and Hata, K., ACS Nano 5, 811 (2011).CrossRefGoogle Scholar
Noda, S., Hasegawa, K., Sugime, H., Kakehi, K., Zhang, Z., Maruyama, S., and Yamaguchi, Y., Jpn. J. Appl. Phys. 46, L399 (2007).CrossRefGoogle Scholar
Meshot, E.R., Plata, D.L., Tawfick, S., Zhang, Y., Verploegen, E.A., and Hart, A.J., ACS Nano 3, 2477 (2009).CrossRefGoogle Scholar
Chakrabarti, S., Kume, H., Pan, L., Nagasaka, T., and Nakayama, Y., J. Phys. Chem. C 111, 1929 (2007).CrossRefGoogle Scholar
Zhong, G., Iwasaki, T., Robertson, J., and Kawarada, H., J. Phys. Chem. B 111, 1907 (2007).CrossRefGoogle Scholar
Amama, P.B., Pint, C.L., Kim, S.M., McJilton, L., Eyink, K.G., Stach, E.A., Hauge, R.H., and Maruyama, B., ACS Nano 4, 895 (2010).CrossRefGoogle Scholar
Tsuji, T., Hata, K., Futaba, D.N., and Sakurai, S., J. Am. Chem. Soc. 138, 16608 (2016).CrossRefGoogle Scholar
Esconjauregui, S., Makaryan, T., Mirea, T., Demiguel-Ramos, M., Olivares, J., Guo, Y., Sugime, H., D’Arsié, L., Yang, J., Bhardwaj, S., Cepek, C., Robertson, J., Iborra, E., Appl. Phys. Lett. 107, 133106 (2015).CrossRefGoogle Scholar
Mirea, T., Olivares, J., Clement, M., DeMiguel-Ramos, M., de Frutos, J., Sangrador, J., and Iborra, E., RSC Adv. 5, 80682 (2015).CrossRefGoogle Scholar
Eren, B., Marot, L., Steiner, R., de los Arcos, T., Düggelin, M., Mathys, D., Goldie, K.N., Olivieri, V., and Meyer, E., Chem. Phys. Lett. 609, 82 (2014).CrossRefGoogle Scholar
Chen, G., Davis, R.C., Futaba, D.N., Sakurai, S., Kobashi, K., Yumura, M., and Hata, K., Nanoscale 8, 162 (2016).CrossRefGoogle ScholarPubMed
Xu, M., Futaba, D.N., Yumura, M., and Hata, K., ACS Nano 6, 5837 (2012).CrossRefGoogle Scholar
Tsuji, T., Hata, K., Futaba, D.N., and Sakurai, S., MRS Adv. 2, 1 (2017).CrossRefGoogle Scholar
Motamedi, P. and Cadien, K., Appl. Surf. Sci. 315, 104 (2014).CrossRefGoogle Scholar
Qiu, W., Liu, Z., and Zhou, K., Rare Met. 35, 520 (2016).CrossRefGoogle Scholar
Sakurai, S., Nishino, H., Futaba, D. N., Yasuda, S., Yamada, T., Maigne, A., Matsuo, Y., Nakamura, E., Yumura, M. and Hata, K., J. Am. Chem. Soc., 134, 2148 (2012).CrossRefGoogle Scholar
Xiang, R. and Maruyama, S., Roy. Soc. Open Sci., 5, 180345 (180345).CrossRefGoogle Scholar
Supplementary material: File

Tsuji et al. supplementary material

Figure S1

Download Tsuji et al. supplementary material(File)
File 49.7 KB