Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-06T00:52:25.678Z Has data issue: false hasContentIssue false

Carbon Nanotube Electronics and Optoelectronics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Carbon nanotubes (CNTs) are one-dimensional nanostructures with unique properties. This article discusses why CNTs provide an ideal basis for a future carbonbased nanoelectronic technology, focusing specifically on single-carbon-nanotube fieldeffect transistors (CNT-FETs). Results of transport experiments and theoretical modeling will be used to address such issues as the nature of the switching mechanism, the role of the metal contacts, the role of the environment, the FET scaling properties, and the use of these findings to produce high-performance p-type, n-type, and ambipolar CNT-FETs and simple intra-nanotube circuits. CNTs are also direct-gap nanostructures that show promise in the field of optoelectronics. This article briefly reviews their optical behavior and presents results that show that ambipolar CNT-FETs can be used to produce electrically controlled light sources based on radiative electron–hole recombination. The reverse process—that is, the generation of photocurrents by the irradiation of single CNT—FETs—and photoconductivity spectra of individual CNTs are also demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Sze, S.M.Physics of Semiconducting Devices (Wiley, New York, 1981).Google Scholar
2Dresselhaus, M.S.Dresselhaus, G. and Saito, R.Phys. Rev. B45 (1992) p.6234.CrossRefGoogle Scholar
3Mintmire, J.W.Dunlap, B.I. and White, C.T.Phys. Rev. Lett. 68 (1992) p.631.CrossRefGoogle Scholar
4Dresselhaus, M.S.Dresselhaus, G. and Avouris, Ph., eds., Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer-Verlag, Berlin, 2001).CrossRefGoogle Scholar
5Imry, Y. and Landauer, R.Rev. Mod. Phys. 71 (1999) p.S306.CrossRefGoogle Scholar
6Datta, S.Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1995).CrossRefGoogle Scholar
7McEuen, P.L.Bockrath, M.Cobden, D.H.Yoon, Y.G. and Louie, S.G.Phys. Rev. Lett. 83 (1999) p.5098.CrossRefGoogle Scholar
8Wenjie, L.Bockrath, M.Bozovic, D.Hafner, J.H.Tinkman, M. and Hongkum, P.Nature 411 (2001) p.665.Google Scholar
9Kong, J.Yenilmez, E.Tombler, T.W.Kim, W.Dai, H.Laughlin, R.B.Liu, L.Jayanthi, C.S. and Wu, S.Y.Phys. Rev. Lett. 87 106801 (2001).CrossRefGoogle Scholar
10Appenzeller, J.Martel, R.Avouris, Ph.Stahl, H. and Lengeler, B.Appl. Phys. Lett. 78 (2001) p.3313.CrossRefGoogle Scholar
11Mann, D.Javey, A.Kong, J., Wang, Q. and Dai, H.Nano Lett. 3 (2003) p.1541.CrossRefGoogle Scholar
12Park, J.Y.Rosenblatt, S.Yaish, Y.Sazonova, V.Ustunel, H.Braig, S.Arias, T.A.Brouwer, D.W. and McEuen, P.L. “Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes,” arXiv.org e-print archive, cond-mat/0309641 (accessed March 2004).CrossRefGoogle Scholar
13Yao, A.Z.Kane, C.L. and Dekker, C.Phys. Rev. Lett. 61 (2000) p.2941.CrossRefGoogle Scholar
14Javey, A.Guo, J.Paulson, M.Wang, Q.Mann, D.Lundstrom, M. and Dai, H. “High-Field, Quasi-Ballistic Transport in Short Carbon Nano-tubes,” arXiv.org e-print archive, cond-mat/ 0309242 (accessed March 2004).CrossRefGoogle Scholar
15Collins, P.G.Hersam, M.Arnold, M.Martel, R. and Avouris, Ph.Phys. Rev. Lett. 86 (2001) p.3128.CrossRefGoogle Scholar
16Collins, P.G.Arnold, M.S. and Avouris, Ph.Science 292 (2001) p.706.CrossRefGoogle Scholar
17Wind, S.Appenzeller, J. and PAvouris, h.Phys. Rev. Lett. 91 058301 (2003).CrossRefGoogle Scholar
18Yaish, Y.Park, J.Y.Rosenblatt, S.Sazonova, V.Brink, M. and McEuen, P.L. “Electrical Nanoprobing of Semiconducting Carbon Nano-tubes Using an Atomic Force Microscope,” arXiv.org e-print archive, cond-mat/0305108 (accessed March 2004).CrossRefGoogle Scholar
19Javey, A.Guo, J.Wang, Q.Lundstrom, M. and Dai, H.Nature 424 (2003) p.654.CrossRefGoogle Scholar
20Avouris, Ph.Appenzeller, J.Martel, R. and Wind, S.J.Proc. IEEE 91 (2003) p.1772.CrossRefGoogle Scholar
21Tans, S.Verschueren, S. and Dekker, C.Nature 393 (1998) p.49.CrossRefGoogle Scholar
22Martel, R.Schmidt, T.Shea, H.R.Hertel, T. and Avouris, Ph.Appl. Phys. Lett. 73 (1998) p.2447.CrossRefGoogle Scholar
23Soh, H.T.Quate, C.F.Morpurgo, A.F.Marcus, C.Kong, J., and Dai, H.App. Phys. Lett. 75 (1999) p.627.CrossRefGoogle Scholar
24Martel, R.Wong, H.S.P.Chan, K. and Avouris, Ph. in Proc. IEDM 2001 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001) p.159.Google Scholar
25McEuen, P.L.Fuhrer, M.S. and Park, H.IEEE Trans. Nanotechnol. 1 (2002) p. 78 and references therein.CrossRefGoogle Scholar
26Wind, S.J. J.Appenzeller, Martel, R. and Avouris, Ph.Appl. Phys. Lett. 80 (2002) p.3817.CrossRefGoogle Scholar
27Javey, A.Kim, H.Brink, M.Wang, Q.Ural, A.Guo, J.McIntyre, P.McEuen, P.Lundstrom, M., and Dai, H.Nat. Mater. 1 (2002) p.241.CrossRefGoogle Scholar
28Appenzeller, J.Knoch, J.Derycke, V.Martel, R.Wind, S. and Avouris, Ph.Phys. Rev. Lett. 89 126801 (2002).CrossRefGoogle Scholar
29Javey, A.Guo, J.Wang, Q.Lundstrom, M. and Dai, H.J.Nature 424 (2003) p.654.CrossRefGoogle Scholar
30Radosavljevic, M.Appenzeller, J. and PAvouris, h.Appl. Phys. Lett. 84 (2004) p. 3693.CrossRefGoogle Scholar
31Tseng, Y.C.Xuan, P.Javey, A.Malloy, R.Wang, Q.Bokor, J. and Dai, H.Nano Lett. (2004) in press.Google Scholar
32Rochefort, A.Ventro, M. Di and Avouris, Ph.Appl. Phys. Lett. 78 (2001) p.2521.CrossRefGoogle Scholar
33Durkop, T.Getty, S.A.Cobas, E. and Fuhrer, M.S.Nano Lett. 4 (2004) p.35.CrossRefGoogle Scholar
34Martel, R.Derycke, V.Lavoie, C.Appenzeller, J.Chen, K.Tersoff, J. and PAvouris, h.Phys. Rev. Lett. 87 256805 (2001).CrossRefGoogle Scholar
35Appenzeller, J.Radosavljevic, M.Knoch, J. and PAvouris, h.Phys. Rev. Lett. 92 648301 (2004).Google Scholar
36Avouris, Ph.Lyo, I.W. and Hasegawa, Y.J.Vac. Sci. Technol., A 11 (1993) p.1725.CrossRefGoogle Scholar
37Leonard, F. and Tersoff, J.Phys. Rev. Lett. 84 (2000) p.4693.CrossRefGoogle Scholar
38Freitag, M.Radosavljevic, M.Zhou, Y.Johnson, A.T. and Smith, W.F.Appl. Phys. Lett. 79 (2001) p.3326.CrossRefGoogle Scholar
39Heinze, S.Tersoff, J.Martel, R.Derycke, V.Appenzeller, J., and Avouris, Ph.Phys. Rev. Lett. 89 106801 (2002).CrossRefGoogle Scholar
40Wind, S.J.Appenzeller, J. and Avouris, Ph.Phys. Rev. Lett. 91 058301 (2003).CrossRefGoogle Scholar
41Lang, N.D. and PAvouris, h.Phys. Rev. Lett. 84 (2000) p. 358; Phys. Rev. B 64 125323 (2001).CrossRefGoogle Scholar
42Nikolaev, P.Bronikowski, M.J.Bradley, R.K.Rohmund, F.Colbert, D.T.Smith, K.A. and Smalley, R.E.Chem. Phys. Lett. 313 (1999) p.91.CrossRefGoogle Scholar
43Thess, A.Lee, R.Nikolaev, P.Dai, H.Petit, P.Robert, J.Chunhui, X.Hee, L. Young, Gon, K. Seong, Rinzler, A.G.Colbert, D.T.Scuseria, G.E.Tomanek, D.Fischer, J.E. and Smalley, R.E.Science 273 (1996) p.483.CrossRefGoogle Scholar
44Radosavljevic, M.Heinze, S.Tersoff, J. and Avouris, Ph.Appl. Phys. Lett. 83 (2003) p. 2435.CrossRefGoogle Scholar
45Heinze, S.Tersoff, J. and Avouris, Ph.Appl. Phys. Lett. 83 (2003) p.5038.CrossRefGoogle Scholar
46Lin, Y.M.Appenzeller, J. and Avouris, Ph.Nano Lett. 4 (2004) p. 947.CrossRefGoogle Scholar
47Collins, P.G.Bradley, K.Ishigami, M. and Zettl, A.Science 287 (2000) p.1801.CrossRefGoogle Scholar
48Jhi, S.H.Louie, S.G. and Cohen, M.L.Phys. Rev. Lett. 85 (2000) p.1710.CrossRefGoogle Scholar
49Derycke, V.Martel, R.Appenzeller, J. and Avouris, Ph.Appl. Phys. Lett. 80 (2002) p. 2773.CrossRefGoogle Scholar
50Cui, X.Freitag, M.Martel, R.Brus, L. and Avouris, Ph.Nano Lett. 3 (2003) p.783.CrossRefGoogle Scholar
51Heinze, S.Radosavljevic, M.Tersoff, J. and Avouris, Ph.Phys. Rev. B 68 235418 (2003).CrossRefGoogle Scholar
52Derycke, V.Martel, R.Appenzeller, J. and Avouris, Ph.Nano Lett. 1 (2001) p.453.CrossRefGoogle Scholar
53Bachtold, A.Hadley, P.Nakanishi, T. and Dekker, C.Science 294 (2001) p.1317.CrossRefGoogle Scholar
54Javey, A.Wang, Q.Urai, A.Li, Y. and Dai, H.Nano Lett. 2 (2002) p.929.CrossRefGoogle Scholar
55Frank, D.J. and Appenzeller, J., IEEE Electron Device Lett. 25 (2004) p.34.CrossRefGoogle Scholar
56Ishida, M.Mizuno, S.Yoshihino, T.Saito, Y. and Nakamura, A.J. Phys. Soc. Jpn. 68 (1999) p.3131.Google Scholar
57Saito, R. and Kataura, H. in Carbon Nanotubes: Synthesis, Structure, Properties and Applications, edited by Dresselhaus, M.S.Dresselhaus, G. and Avouris, Ph. (Springer-Verlag, Berlin, 2001) p.213.CrossRefGoogle Scholar
58O'Connell, M.J., Bachilo, S.M.Huffman, C.B.Moore, V.C.Strano, M.S.Haroz, E.H.Rialon, K.L.Boul, P.J.Noon, W.H.Kittrell, C.Ma, J.Hauge, R.H.Smalley, R.E. and Weisman, R.B.Science 297 (2002) p.2361.CrossRefGoogle Scholar
59Bachilo, S.M.Strano, M.S.Kittrell, C.Hauge, R.H.Smalley, R.E. and Weisman, R.B.Science 298 (2002) p.2361.CrossRefGoogle Scholar
60Hagen, A. and Hertel, T.Nano Lett. 3 (2003) p.383.CrossRefGoogle Scholar
61Lefebvre, J.Homma, Y. and Finnie, P.Phys. Rev. Lett. 90 217401 (2003).CrossRefGoogle Scholar
62Ando, T.J. Phys. Soc. Jpn 66 (1996) p. 1066.CrossRefGoogle Scholar
63Pedersen, T.G.Phys. Rev. B 67 073401 (2003).CrossRefGoogle Scholar
64Kane, C.L. and Mele, E.J.Phys. Rev. Lett. 90 207401 (2003).CrossRefGoogle Scholar
65Spataru, C.D.Ismail-Beigi, S., Benedict, L.X. and Louie, S.G.Phys. Rev. Lett. 92 077402 (2004).CrossRefGoogle Scholar
66Perebeinos, V.Tersoff, J. and Avouris, Ph. “Scaling of Excitons in Carbon Nanotubes,” arXiv e-print archive, cond-mat/0402091 (accessed March 2004); Phys. Rev. Lett. (2004) in press.Google Scholar
67Fujuwara, A.Matsuoka, Y.Suematsu, H.Ogata, N. et al. Jpn. J. Appl. Phys., Part 1 40 (2001) p.L1229.Google Scholar
68Yamada, Y.Naka, N.Nagasawa, N.Li, Z.M. and Tang, Z.K.Physica B 323 (2002) p.239.Google Scholar
69Zhang, Y. and Iijima, S.Phys. Rev. Lett. 82 (1999) p.3472.CrossRefGoogle Scholar
70Freitag, M.Martin, Y.Misewich, J.A.Martel, R. and Avouris, Ph.Nano Lett. 3 (2003) p.1067.CrossRefGoogle Scholar
71Misewich, J.A.Martel, R.Avouris, Ph.Tsang, J.C.Heinze, S. and Tersoff, J.Science 300 (2003) p.783.CrossRefGoogle Scholar
72Freitag, M.Chen, J.Stein, A.Tsang, T.Misewich, J.Martel, R. and Avouris, Ph.Nano Lett. (2004) in press.Google Scholar
73Freitag, M.Chen, J.Tsang, J.Fu, Q.Liu, J. and Avouris, Ph.Phys. Rev. Lett. (2004) submitted for publication.Google Scholar