Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-03T10:31:21.932Z Has data issue: false hasContentIssue false

Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides

Published online by Cambridge University Press:  09 October 2020

Weichen Hong
Affiliation:
Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University–Purdue University Indianapolis, USA; hweichen@purdue.edu
Brian C. Wyatt
Affiliation:
Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University–Purdue University Indianapolis, USA; bcwyatt@iu.edu
Srinivasa Kartik Nemani
Affiliation:
Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University–Purdue University Indianapolis, USA; snemani@purdue.edu
Babak Anasori
Affiliation:
Department of Mechanical and Energy Engineering and Integrated Nanosystems Development Institute, Purdue School of Engineering and Technology, Indiana University–Purdue University Indianapolis, USA; banasori@iupui.edu
Get access

Abstract

MXenes are a large family of two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides. The MXene family has expanded since their original discovery in 2011, and has grown larger with the discovery of ordered double transition-metal (DTM) MXenes. These DTM MXenes differ from their counterpart mono-transition-metal (mono-M) MXenes, where two transition metals can occupy the metal sites. Ordered DTM MXenes are comprised of transition metals in either an in-plane or out-of-plane ordered structure. Additionally, some DTM MXenes are in the form of random solid solutions, which are defined by two randomly distributed transition metals throughout the 2D structure. Their different structures and array of transition-metal pairs provide the ability to tune DTM MXenes for specific optical, magnetic, electrochemical, thermoelectric, catalytic, or mechanical behavior. This degree of control over their composition and structure is unique in the field of 2D materials and offers a new avenue for application-driven design of functional nanomaterials. In this article, we review the synthesis, structure, and properties of DTM MXenes and provide an outlook for future research in this field.

Type
Technical Feature
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A., Science 306, 666 (2004).10.1126/science.1102896CrossRefGoogle Scholar
Zhang, X., Hou, L., Ciesielski, A., Samorì, P., Adv. Energy Mater. 6, 1600671 (2016).10.1002/aenm.201600671CrossRefGoogle Scholar
Pomerantseva, E., Gogotsi, Y., Nat. Energy 2, 1 (2017).CrossRefGoogle Scholar
Xu, B., Qi, S., Jin, M., Cai, X., Lai, L., Sun, Z., Han, X., Lin, Z., Shao, H., Peng, P., Chin. Chem. Lett. 30, 2053 (2019).10.1016/j.cclet.2019.10.028CrossRefGoogle Scholar
Kim, H., Alshareef, H.N., ACS Mater. Lett. 2, 55 (2019).10.1021/acsmaterialslett.9b00419CrossRefGoogle Scholar
Ding, L., Wei, Y., Wang, Y., Chen, H., Caro, J., Wang, H., Angew. Chem. Int. Ed. 56, 1825 (2017).CrossRefGoogle Scholar
Sun, P., Zhu, M., Wang, K., Zhong, M., Wei, J., Wu, D., Xu, Z., Zhu, H., ACS Nano. 7, 428 (2013).10.1021/nn304471wCrossRefGoogle Scholar
Ma, T.Y., Cao, J.L., Jaroniec, M., Qiao, S.Z., Angew. Chem. Int. Ed. 55, 1138 (2016).CrossRefGoogle Scholar
Yuan, W., Shi, G., J. Mater. Chem. A 1, 10078 (2013).CrossRefGoogle Scholar
Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., Braet, F., Angew. Chem. Int. Ed. 49, 2114 (2010).Google Scholar
Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M.W., Adv. Mater. 23, 4248 (2011).CrossRefGoogle Scholar
Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., Barsoum, M.W., ACS Nano 6, 1322 (2012).10.1021/nn204153hCrossRefGoogle Scholar
Khazaei, M., Arai, M., Sasaki, T., Chung, C.-Y., Venkataramanan, N.S., Estili, M., Sakka, Y., Kawazoe, Y., Adv. Funct. Mater. 23, 2185 (2013).CrossRefGoogle Scholar
Khazaei, M., Ranjbar, A., Arai, M., Sasaki, T., Yunoki, S., J. Mater. Chem. C 5, 2488 (2017).CrossRefGoogle Scholar
Anasori, B., Shi, C., Moon, E.J., Xie, Y., Voigt, C.A., Kent, P.R., May, S.J., Billinge, S.J., Barsoum, M.W., Gogotsi, Y., Nanoscale Horiz. 1, 227 (2016).10.1039/C5NH00125KCrossRefGoogle Scholar
Hantanasirisakul, K., Zhao, M.Q., Urbankowski, P., Halim, J., Anasori, B., Kota, S., Ren, C.E., Barsoum, M.W., Gogotsi, Y., Adv. Electron. Mater. 2, 1600050 (2016).CrossRefGoogle Scholar
Zhang, H., Yang, G., Zuo, X., Tang, H., Yang, Q., Li, G., J. Mater. Chem. A. 4, 12913 (2016).CrossRefGoogle Scholar
Dillon, A.D., Ghidiu, M.J., Krick, A.L., Griggs, J., May, S.J., Gogotsi, Y., Barsoum, M.W., Fafarman, A.T., Adv. Funct. Mater. 26, 4162 (2016).10.1002/adfm.201600357CrossRefGoogle Scholar
Lipatov, A., Lu, H., Alhabeb, M., Anasori, B., Gruverman, A., Gogotsi, Y., Sinitskii, A., Sci. Adv. 4, eaat0491 (2018).CrossRefGoogle Scholar
Lipatov, A., Alhabeb, M., Lu, H., Zhao, S., Loes, M.J., Vorobeva, N.S., Dall̓̓̓’Agnese, Y., Gao, Y., Gruverman, A., Gogotsi, Y., Adv. Electron. Mater. 6, 1901382 (2020).CrossRefGoogle Scholar
Zha, X.-H., Luo, K., Li, Q., Huang, Q., He, J., Wen, X., Du, S., Europhys. Lett. 111, 26007 (2015).10.1209/0295-5075/111/26007CrossRefGoogle Scholar
Alhabeb, M., Maleski, K., Anasori, B., Lelyukh, P., Clark, L., Sin, S., Gogotsi, Y., Chem. Mater. 29, 7633 (2017).CrossRefGoogle Scholar
Maleski, K., Mochalin, V.N., Gogotsi, Y., Chem. Mater. 29, 1632 (2017).CrossRefGoogle Scholar
Anasori, B., Lukatskaya, M.R., Gogotsi, Y., Nat. Rev. Mater. 2, 16098 (2017).CrossRefGoogle Scholar
Deysher, G., Shuck, C.E., Hantanasirisakul, K., Frey, N.C., Foucher, A.C., Maleski, K., Sarycheva, A., Shenoy, V.B., Stach, E.A., Anasori, B., Gogotsi, Y., ACS Nano 14, 204 (2020).CrossRefGoogle Scholar
Naguib, M., Mochalin, V.N., Barsoum, M.W., Gogotsi, Y., Adv. Mater. 26, 992 (2014).CrossRefGoogle Scholar
Gogotsi, Y., Anasori, B., ACS Nano 13, 8491 (2019).CrossRefGoogle Scholar
Zhang, J., Kong, N., Uzun, S., Levitt, A., Seyedin, S., Lynch, P.A., Qin, S., Han, M., Yang, W., Liu, J., Adv. Mater. 32, 2001093 (2020).CrossRefGoogle Scholar
Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Hong, S.M., Koo, C.M., Gogotsi, Y., Science 353, 1137 (2016).CrossRefGoogle Scholar
Radovic, M., Barsoum, M.W., Am. Ceram. Soc. Bull. 92, 20 (2013).Google Scholar
Zhou, J., Zha, X., Chen, F.Y., Ye, Q., Eklund, P., Du, S., Huang, Q., Angew. Chem. Int. Ed. 55, 5008 (2016).10.1002/anie.201510432CrossRefGoogle Scholar
Sokol, M., Natu, V., Kota, S., Barsoum, M.W., Trends Chem. 1, 210 (2019).CrossRefGoogle Scholar
Khazaei, M., Ranjbar, A., Esfarjani, K., Bogdanovski, D., Dronskowski, R., Yunoki, S., Phys. Chem. Chem. Phys. 20, 8579 (2018).CrossRefGoogle Scholar
Hope, M.A., Forse, A.C., Griffith, K.J., Lukatskaya, M.R., Ghidiu, M., Gogotsi, Y., Grey, C.P., Phys. Chem. Chem. Phys. 18, 5099 (2016).10.1039/C6CP00330CCrossRefGoogle Scholar
Wang, X., Shen, X., Gao, Y., Wang, Z., Yu, R., Chen, L., J. Am. Chem. Soc. 137, 2715 (2015).CrossRefGoogle Scholar
Li, Y., Shao, H., Lin, Z., Lu, J., Liu, L., Duployer, B., Persson, P.O., Eklund, P., Hultman, L., Li, M., Chen, K., Zha, X.-H., Du, S., Rozier, P., Chai, Z., Raymundo-Piero, E., Taberna, P.-L., Simon, P., Huang, Q., Nat. Mater. 1 (2020).Google Scholar
Persson, I., Näslund, L.-Å., Halim, J., Barsoum, M.W., Darakchieva, V., Palisaitis, J., Rosen, J., Persson, P.O.Å., 2D Mater. 5, 015002 (2017).CrossRefGoogle Scholar
Kamysbayev, V., Filatov, A.S., Hu, H., Rui, X., Lagunas, F., Wang, D., Klie, R.F., Talapin, D.V., Science 369, 979 (2020).Google Scholar
Anasori, B., Xie, Y., Beidaghi, M., Lu, J., Hosler, B.C., Hultman, L., Kent, P.R.C., Gogotsi, Y., Barsoum, M.W., ACS Nano 9, 9507 (2015).10.1021/acsnano.5b03591CrossRefGoogle Scholar
Persson, I., el Ghazaly, A., Tao, Q., Halim, J., Kota, S., Darakchieva, V., Palisaitis, J., Barsoum, M.W., Rosen, J., Persson, P.O.A., Small 14, 1703676 (2018).CrossRefGoogle Scholar
Yang, J., Naguib, M., Ghidiu, M., Pan, L.M., Gu, J., Nanda, J., Halim, J., Gogotsi, Y., Barsoum, M.W., J. Am. Ceram. Soc. 99, 660 (2016).CrossRefGoogle Scholar
Shen, Z., Wang, Z., Zhang, M., Gao, M., Hu, J., Du, F., Liu, Y., Pan, H., Materialia 1, 114 (2018).CrossRefGoogle Scholar
Li, L., Comput. Mater. Sci. 124, 8 (2016).CrossRefGoogle Scholar
Tan, T. L., Jin, H.M., Sullivan, M.B., Anasori, B., Gogotsi, Y., ACS Nano 11, 4407 (2017).CrossRefGoogle Scholar
Rosen, J., Dahlqvist, M., Tao, Q., Hultman, L., in 2D Metal Carbides and Nitrides (MXenes), (Springer, Cham, Switzerland, 2019), pp. 3752.CrossRefGoogle Scholar
Pinto, D., Anasori, B., Avireddy, H., Shuck, C.E., Hantanasirisakul, K., Deysher, G., Morante, J.R., Porzio, W., Alshareef, H.N., Gogotsi, Y., J. Mater. Chem. A. 8, 8957 (2020).CrossRefGoogle Scholar
Yazdanparast, S., Soltanmohammad, S., Fash-White, A., Tucker, G., Brennecka, G.L., ACS Appl. Mater. Interfaces 12, 20129 (2020).CrossRefGoogle Scholar
Tao, Q., Dahlqvist, M., Lu, J., Kota, S., Meshkian, R., Halim, J., Palisaitis, J., Hultman, L., Barsoum, M.W., Persson, P.O., Nat. Commun. 8, 14949 (2017).CrossRefGoogle Scholar
Chen, L., Dahlqvist, M., Lapauw, T., Tunca, B., Wang, F., Lu, J., Meshkian, R., Lambrinou, K., Blanpain, B., Vleugels, J., Inorg. Chem. 57, 6237 (2018).CrossRefGoogle Scholar
Dahlqvist, M., Lu, J., Meshkian, R., Tao, Q., Hultman, L., Rosen, J., Sci. Adv. 3, e1700642 (2017).CrossRefGoogle Scholar
Dahlqvist, M., Petruhins, A., Lu, J., Hultman, L., Rosen, J., ACS Nano 12, 7761 (2018).CrossRefGoogle Scholar
Tao, Q., Lu, J., Dahlqvist, M., Mockute, A., Calder, S., Petruhins, A., Meshkian, R., Rivin, O., Potashnikov, D., Caspi, E.a.N., Shaked, H., Hoser, A., Opagiste, C., Galera, R.-M., Salikhov, R., Wiedwald, U., Ritter, C., Wildes, A.R., Johansson, B., Hultman, L., Farle, M., Barsoum, M.W., Rosen, J., Chem. Mater. 31, 2476 (2019).CrossRefGoogle Scholar
Lind, H., Halim, J., Simak, S., Rosén, J., Phys. Rev. Mater. 1, 044002 (2017).CrossRefGoogle Scholar
Meshkian, R., Dahlqvist, M., Lu, J., Wickman, B., Halim, J., Thornberg, J., Tao, Q., Li, S., Intikhab, S., Snyder, J., Barsoum, M.W., Yildizhan, M., Palisaitis, J., Hultman, L., Persson, P.O.A., Rosen, J., Adv. Mater. 30, 1706409 (2018).CrossRefGoogle Scholar
Khazaei, M., Ranjbar, A., Arai, M., Yunoki, S., Phys. Rev. B 94, 125152 (2016).CrossRefGoogle Scholar
Caspi, E.N., Chartier, P., Porcher, F., Damay, F., Cabioc’h, T., Mater. Res. Lett. 3, 100 (2014).CrossRefGoogle Scholar
Meshkian, R., Tao, Q., Dahlqvist, M., Lu, J., Hultman, L., Rosen, J., Acta Mater. 125, 476 (2017).CrossRefGoogle Scholar
Anasori, B., Dahlqvist, M., Halim, J., Moon, E.J., Lu, J., Hosler, B.C., Caspi, E.a.N., May, S.J., Hultman, L., Eklund, P., Rosen, J., Barsoum, M.W., J. Appl. Phys. 118, 094304 (2015).CrossRefGoogle Scholar
Liu, Z., Zheng, L., Sun, L., Qian, Y., Wang, J., Li, M., J. Am. Ceram. Soc. 97, 67 (2014).CrossRefGoogle Scholar
Tunca, B., Lapauw, T., Karakulina, O.M., Batuk, M., Cabioc'h, T., Hadermann, J., Delville, R., Lambrinou, K., Vleugels, J., Inorg. Chem. 56, 3489 (2017).CrossRefGoogle Scholar
Lui, G., Natu, V., Shi, T., Barsoum, M.W., Titova, L.V., ACS Appl. Energy Mater. 3, 1530 (2020).CrossRefGoogle Scholar
Dahlqvist, M., Rosen, J., Nanoscale 12, 785 (2020).CrossRefGoogle Scholar
Dong, L., Kumar, H., Anasori, B., Gogotsi, Y., Shenoy, V.B., J. Phys. Chem. Lett. 8, 422 (2017).CrossRefGoogle Scholar
Sun, W.W., Xie, Y., Kent, P.R.C., Nanoscale 10, 11962 (2018).CrossRefGoogle Scholar
Kim, H., Anasori, B., Gogotsi, Y., Alshareef, H.N., Chem. Mater. 29, 6472 (2017).CrossRefGoogle Scholar
Hart, J.L., Hantanasirisakul, K., Lang, A.C., Anasori, B., Pinto, D., Pivak, Y., van Omme, J.T., May, S.J., Gogotsi, Y., Taheri, M.L., Nat. Commun. 10, 1 (2019).Google Scholar
Siriwardane, E.M.D., Cakir, D., J. Appl. Phys. 125, 082527 (2019).CrossRefGoogle Scholar
He, J.J., Ding, G.Q., Zhong, C.Y., Li, S., Li, D.F., Zhang, G., Nanoscale 11, 356 (2019).CrossRefGoogle Scholar
Rajan, A.C., Mishra, A., Satsangi, S., Vaish, R., Mizuseki, H., Lee, K.-R., Singh, A.K., Chem. Mater. 30, 4031 (2018).CrossRefGoogle Scholar
Yang, Y., Hantanasirisakul, K., Frey, N., Anasori, B., Green, R., Rogge, P., Waluyo, I., Hunt, A., Shafer, P., Arenholz, E., Shenoy, V., Gogotsi, Y., May, S., 2D Mater. 7, 025015 (2020).Google Scholar
Fu, Z.H., Liu, Z.R., Legut, D., Germann, T.C., Si, C., Du, S.Y., Francisco, J.S., Zhang, R.F., J. Phys. Chem. C 123, 20664 (2019).CrossRefGoogle Scholar
Han, M., Shuck, C.E., Rakhmanov, R., Parchment, D., Anasori, B., Koo, C.M., Friedman, G., Gogotsi, Y., ACS Nano 14, 5008 (2020).CrossRefGoogle Scholar
Halim, J., Moon, E.J., Eklund, P., Rosen, J., Barsoum, M.W., Ouisse, T., Phys. Rev. B 98, 104202 (2018).CrossRefGoogle Scholar
Yang, J.H., Luo, X.P., Zhou, X.M., Zhang, S.Z., Liu, J., Xie, Y., Lv, L., Chen, L., Comput. Mater. Sci. 139, 313 (2017).10.1016/j.commatsci.2017.08.016CrossRefGoogle Scholar
Hu, Y., Fan, X., Guo, W., An, Y., Luo, Z., Kong, J., J. Magn. Magn. Mater. 486, 165280 (2019).CrossRefGoogle Scholar
Maleski, K., “Solution Processing and Optical Properties of 2D Transition Metal Carbides (MXenes),” PhD dissertation, Drexel University, Philadelphia, PhD Dissertation, (2020).Google Scholar
Zhang, C., Anasori, B., Seral-Ascaso, A., Park, S.H., McEvoy, N., Shmeliov, A., Duesberg, G.S., Coleman, J.N., Gogotsi, Y., Nicolosi, V., Adv. Mater. 29, 1702678 (2017).CrossRefGoogle Scholar
Fu, Z.H., Zhang, S.H., Legut, D., Germann, T.C., Si, C., Du, S.Y., Francisco, J.S., Zhang, R.F., Phys. Chem. Chem. Phys. 20, 29684 (2018).CrossRefGoogle Scholar
Kurtoglu, M., Naguib, M., Gogotsi, Y., Barsoum, M.W., MRS Commun. 2, 133 (2012).CrossRefGoogle Scholar
Borysiuk, V.N., Mochalin, V.N., Gogotsi, Y., Nanotechnology 26, 265705 (2015).CrossRefGoogle Scholar
Plummer, G., Anasori, B., Gogotsi, Y., Tucker, G.J., Comput. Mater. Sci. 157, 168 (2019).CrossRefGoogle Scholar
Rudy, E., “Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems, Part 5, Compendium of Phase Diagram Data,” (Aerojet-General Corporation, Sacramento, CA, 1969).Google Scholar
Wang, H., Yuan, H., Hong, S.S., Li, Y., Cui, Y., Chem. Soc. Rev. 44, 2664 (2015).CrossRefGoogle Scholar
Chen, Y., Xi, J., Dumcenco, D.O., Liu, Z., Suenaga, K., Wang, D., Shuai, Z., Huang, Y.-S., Xie, L., ACS Nano 7, 4610 (2013).CrossRefGoogle Scholar
Ashton, M., Hennig, R.G., Broderick, S.R., Rajan, K., Sinnott, S.B., Phys. Rev. B 94, 054116 (2016).CrossRefGoogle Scholar
Ingason, A.S., Dahlqvist, M., Rosén, J., J. Phys. Condens. Matter 28, 433003 (2016).CrossRefGoogle Scholar
Urbankowski, P., Anasori, B., Makaryan, T., Er, D., Kota, S., Walsh, P.L., Zhao, M., Shenoy, V.B., Barsoum, M.W., Gogotsi, Y., Nanoscale 8, 11385 (2016).CrossRefGoogle Scholar
Hantanasirisakul, K., Alhabeb, M., Lipatov, A., Maleski, K., Anasori, B., Salles, P., Ieosakulrat, C., Pakawatpanurut, P., Sinitskii, A., May, S.J., Chem. Mater. 31, 2941 (2019).CrossRefGoogle Scholar
Liang, X., Rangom, Y., Kwok, C.Y., Pang, Q., Nazar, L.F., Adv. Mater. 29, 1603040 (2017).CrossRefGoogle Scholar
Tang, X., Guo, X., Wu, W., Wang, G., Adv. Energy Mater. 8, 1801897 (2018).CrossRefGoogle Scholar
Lin, H., Yang, D.-D., Lou, N., Zhu, S.-G., Li, H.-Z., Ceram. Int. 45, 1588 (2019).10.1016/j.ceramint.2018.10.033CrossRefGoogle Scholar
Li, M., Lu, J., Luo, K., Li, Y., Chang, K., Chen, K., Zhou, J., Rosen, J., Hultman, L., Eklund, P., Persson, P.O.Å., Du, S., Chai, Z., Huang, Z., Huang, Q., J. Am. Chem. Soc. 141, 4730 (2019).CrossRefGoogle Scholar
Mockuté, A., Lu, J., Moon, E., Yan, M., Anasori, B., May, S., Barsoum, M., Rosén, J., Mater. Res. Lett. 3, 16 (2015).CrossRefGoogle Scholar
Anasori, B., Halim, J., Lu, J., Voigt, C.A., Hultman, L., Barsoum, M.W., Scr. Mater. 101, 5 (2015).CrossRefGoogle Scholar