Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-01T08:51:36.028Z Has data issue: false hasContentIssue false

Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials

Published online by Cambridge University Press:  31 January 2011

Dierk Raabe
Affiliation:
Max-Planck-Institut für Eisenforschung in Düsseldorf, Germany; d.raabe@mpie.de
Pyuck-Pa Choi
Affiliation:
Max-Planck-Institut für Eisenforschung in Düsseldorf, Germany; p.choi@mpie.de
Yujiao Li
Affiliation:
Max-Planck-Institut für Eisenforschung in Düsseldorf, Germany; y.li@mpie.de
Aleksander Kostka
Affiliation:
Max-Planck-Institut für Eisenforschung in Düsseldorf, Germany; a.kostka@mpie.de
Xavier Sauvage
Affiliation:
Institut de Physique at the University of Rouen, France; xavier.sauvage@univ-rouen.fr
Florence Lecouturier
Affiliation:
Laboratoire National des Champs Magnétiques Intenses at CNRS, Toulouse, France, florence.lecouturier@lncmi.cnrs.fr
Kazuhiro Hono
Affiliation:
National Institute for Materials Science in Sengen, Tsukuba, Japan; kazuhiro.hono@nims.go.jp
Reiner Kirchheim
Affiliation:
Materials Physics Institute at the University of Göttingen; rkirch@ump.gwdg.de
Reinhard Pippan
Affiliation:
Erich Schmid Institute in Leoben, Austria; reinhard.pippan@oeaw.ac.at
David Embury
Affiliation:
McMaster University, Hamilton, Canada; emburyd@univmail.cis.mcmaster.ca
Get access

Abstract

We review microstructures and properties of metal matrix composites produced by severe plastic deformation of multiphase alloys. Typical processings are wire drawing, ball milling, roll bonding, equal-channel angular extrusion, and high-pressure torsion of multiphase materials. Similar phenomena occur between solids in frictional contact such as in tribology, friction stir welding, and explosive joining. The resulting compounds are characterized by very high interface and dislocation density, chemical mixing, and atomic-scale structural transitions at heterointerfaces. Upon straining, the phases form into nanoscaled filaments. This leads to enormous strengthening combined with good ductility, as in damascene steels or pearlitic wires, which are among the strongest nanostructured bulk materials available today (tensile strength above 6 GPa). Similar materials are Cu-Nb and Cu-Ag composites, which also have good electrical conductivity that qualifies them for use in high-field magnets. Beyond the engineering opportunities, there are also exciting fundamental questions. They relate to the nature of the complex dislocation, amorphization, and mechanical alloying mechanisms upon straining and their relationship to the enormous strength. Studying these mechanisms is enabled by mature atomic-scale characterization and simulation methods. A better understanding of the extreme strength in these materials also provides insight into modern alloy design based on complex solid solution phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Embury, J.D., Fisher, R.M., Acta Metall. 14, 47 (1966).Google Scholar
2. Levi, F.P., J. Appl. Phys. 31, 1469 (1960).Google Scholar
3. Frommeyer, G., Wassermann, G., Acta Metall. 23, 1353 (1975).Google Scholar
4. Bevk, J., Harbison, J.P., Bell, I.L., J. Appl. Phys. 49, 6031 (1978).Google Scholar
5. Funkenbusch, P.D., Courtney, T.H., Acta Metall. 33, 913 (1985).CrossRefGoogle Scholar
6. Spitzig, W.A., Pelton, A.R., Laabs, F.C., Acta Metall. 35, 2427 (1987).Google Scholar
7. Russell, A.M., Chumbley, L.S., Tian, Y., Adv. Eng. Mater. 2, 11 (2000).Google Scholar
8. Hong, M.H., Reynolds, W.T. Jr, Tarui, T., Hono, K., Metall. Mater. Trans. A 30, 717 (1999).Google Scholar
9. Raabe, D., Heringhaus, F., Hangen, U., Gottstein, G., Z. Metallkd. 86, 405 (1995).Google Scholar
10. Raabe, D., Miyake, K., Takahara, H., Mater. Sci. Eng. A 291, 186 (2000).Google Scholar
11. Dupouy, F., Askénazy, S., Peyrade, J.P., Legat, D., Phys. B 211, 43 (1995).CrossRefGoogle Scholar
12. Wood, J.T., Embury, J.D., Ashby, M., Acta Mater. 45, 1099 (1997).Google Scholar
13. Embury, J.D., Han, K., Curr. Opin. Solid State Mater. Sci. 3, 304 (1998).Google Scholar
14. Sauvage, X., Thilly, L., Lecouturier, F., Guillet, A., Blavette, D., Nanostruct. Mater. 11, 1031 (1999).Google Scholar
15. Sauvage, X., Renaud, L., Deconihout, B., Blavette, D., Ping, D.H., Hono, K., Acta Mater. 49, 389 (2001).Google Scholar
16. Thilly, L., Lecouturier, F., von Stebut, J., Acta Mater. 50, 5049 (2002).Google Scholar
17. Heringhaus, F., Raabe, D., Gottstein, G., Acta Metall. 43, 1467 (1995).Google Scholar
18. Sakai, Y., Inoue, K., Maeda, H., Acta Metall. 43, 1517 (1995).CrossRefGoogle Scholar
19. Sakai, Y., Schneider-Muntau, H.J., Acta Metall. 45, 1017 (1997).Google Scholar
20. Heringhaus, F., Schneider-Muntau, H.J., Gottstein, G., Mater. Sci. Eng. 347, 9 (2003).Google Scholar
21. Langford, G., Metall. Trans. 8A, 861 (1977).Google Scholar
22. Tarui, T., Maruyama, N., Takahashi, J., Nishida, S., Tashiro, H., Nippon Steel Techn. Rep. 91, 56 (2005).Google Scholar
23. Goto, S., Kirchheim, R., Al-Kassab, T., Borchers, C., Trans. Nonferrous Met. Soc. China 17, 1129 (2007).Google Scholar
24. Takahashi, J., Tarui, T., Kawakami, K., Ultramicroscopy 109, 193 (2009).Google Scholar
25. Taniyama, A., Takayama, T., Arai, M., Hamada, T., Scripta Mater. 51, 53 (2004).Google Scholar
26. Oh-ishi, K., Zhang, H.W., Ohkubo, T., Hono, K., Mater. Sci. Eng. A 456, 20 (2006).CrossRefGoogle Scholar
27. Lesuer, D.R., Syn, C.K., Sherby, O.D., Kim, D.K., in Metallurgy, Processing and Applications of Metal. Wires, Paris, H.G., Kim, D.K., Eds. (TMS, Warrendale, PA, 1996).Google Scholar
28. Hono, K., Ohnuma, M., Murayama, M., Nishida, S., Yoshie, A., Takahashi, T., Scripta Mater. 44, 977 (2001).Google Scholar
29. Ohsaki, S., Yamazaki, K., Hono, K., Scripta Mater. 48, 1569 (2003).Google Scholar
30. Ohsaki, S., Hono, K., Hidaka, H., Takaki, S., Scripta Mater. 52, 271 (2005).CrossRefGoogle Scholar
31. Zhang, H.W., Ohsaki, S., Mitao, S., Ohnuma, M., Hono, K., Mater. Sci. Eng. A 421, 191 (2006).Google Scholar
32. Ohsaki, S., Kato, S., Tsuji, N., Ohkubo, T., Hono, K., Acta Mater. 55, 2885 (2007).CrossRefGoogle Scholar
33. Gong, H.R., Liu, B.X., J. Appl. Phys. 96, 3020 (2004).CrossRefGoogle Scholar
34. Embury, J.D., Hill, M.A., Spitzig, W.A., Sakai, Y., MRS Bull. 8, 57 (1993).CrossRefGoogle Scholar
35. Elices, M., J. Mater. Sci. 39, 3889 (2004).Google Scholar
36. Spencer, K., Lecouturier, F., Thilly, L., Embury, J.D., Adv. Eng. Mater. 6, 290 (2004).Google Scholar
37. Botcharova, E., Freudenberger, J., Gaganov, A., Khlopkov, K., Schultz, L., Mater. Sci. Eng. A 416, 261 (2006).Google Scholar
38. Langford, G., Metall. Trans. 1, 465 (1970).Google Scholar
39. Trybus, C., Spitzig, W.A., Acta Metall. 37, 1971 (1989).Google Scholar
40. Sevillano, J.G., J. Phys. III 6, 967 (1990).Google Scholar
41. Hangen, U., Raabe, D., Acta Metall. 43, 4075 (1995).Google Scholar
42. Raabe, D., Mattissen, D., Acta Mater. 46, 5973 (1998).Google Scholar
43. Raabe, D., Mattissen, D., Acta Mater. 47, 769 (1999).Google Scholar
44. Raabe, D., Hangen, U., Acta Metall. 44, 953 (1996).Google Scholar
45. Misra, A., Hirth, J.P., Hoagland, R.G., Acta Mater. 53, 4817 (2005).Google Scholar
46. Embury, J.D., Hirth, J.P., Acta Metall. 42, 2051 (1994).Google Scholar
47. Embury, J.D., Sinclair, C.W., Mater. Sci. Eng. A 319, 37 (2001).Google Scholar
48. Embury, J.D., Scripta Metall. Mater. 27, 981 (1992).Google Scholar
49. Wang, J., Hoagland, R.G., Hirth, J.P., Misra, A., Acta Mater. 56, 5685 (2008).CrossRefGoogle Scholar
50. Wang, J., Hoagland, R.G., Hirth, J.P., Misra, A., Acta Mater. 56, 3109 (2008).Google Scholar
51. Wille, C., Al-Kassab, T., Choi, P. P., Kwon, Y.S., Ultramicroscopy 109, 599 (2009).Google Scholar
52. Wille, C., Al-Kassab, T., Schmidt, M., Choi, P. P., Kwon, Y.S., Int. J. Mater. Res. 99, 541 (2008).Google Scholar
53. Choi, P. P., Al-Kassab, T., Kwon, Y.S., Kim, J.S., Kirchheim, R., Microsc. Microanal. 13, 347 (2007).Google Scholar
54. Thilly, L., Ludwig, O., Véron, M., Lecouturier, F., Peyrade, J.P., Askénazy, S., Philos. Mag. A 82, 925 (2002).Google Scholar
55. Janecek, M., Louchet, F., Doisneau-Cottignies, B., Bréchet, Y., Guelton, N., Philos. Mag. A 80, 1605 (2000).Google Scholar
56. Sinclair, C.W., Embury, J.D., Weatherly, G.C., Mater. Sci. Eng. A 272, 90 (1999).Google Scholar
57. Bieler, T.R., Eisenlohr, P., Roters, F., Kumar, D., Mason, D.E., Crimp, M.A., Raabe, D., Int. J. Plast. 25, 1655 (2009).Google Scholar
58. Atienza, J.M., Ruiz-Hervias, J., Martinez-Perez, M.L., Mompean, F.J., Garcia-Hernandez, M., Elices, M., Scripta Mater. 52, 1223 (2005).CrossRefGoogle Scholar
59. Thilly, L., Van Petegem, S., Renault, P.O., Lecouturier, F., Vidal, V., Schmitt, B., Van Swygenhoven, H., Acta Mater. 57, 3157 (2009).CrossRefGoogle Scholar
60. Dupouy, F., Snoeck, E., Casanove, M.J., Roucau, C., Peyrade, J.P., Askénazy, S., Scripta Mater. 34, 1067 (1996).Google Scholar
61. Borchers, C., Al-Kassab, T., Goto, S., Kirchheim, R., Mater. Sci. Eng. A 502 131 (2009).Google Scholar
62. Sauvage, X., Wetscher, F., Pareige, P., Acta Mater. 53, 2127 (2005).Google Scholar
63. Huang, J.Y., Yu, Y.D., Wu, Y.K., Li, D.X., Ye, H.Q., Acta Mater. 45, 113 (1997).Google Scholar
64. Li, Y.J., Choi, P., Borchers, C., Chen, Y.Z., Goto, S., Raabe, D., Kirchheim, R., Acta Mater. (2010), in press.Google Scholar
65. Eckert, J., Holzer, J.C., Krill, C.E. III, Johnson, W.L., J. Appl. Phys. 73, 2794 (1993).Google Scholar
66. Eckert, J., Holzer, J.C., Krill, C.E. III, Johnson, W.L., J. Mater. Res. 1992, 7 (1980).Google Scholar
67. Ma, E., Sheng, H.W., He, J.H., Schilling, P.J., Mater. Sci. Eng. A 286, 48 (2000).Google Scholar
68. Schwarz, R.B., Mater. Sci. Forum 269–272, 665 (1998)CrossRefGoogle Scholar
69. Gleiter, H., Acta Metall. 16, 455 (1968).Google Scholar
70. Differt, K., Essmann, U., Mughrabi, H., Phys. Status Solidi A 104, 95 (1987)Google Scholar
71. Raabe, D., Ohsaki, S., Hono, K., Acta Mater. 57, 5254 (2009).Google Scholar
72. Sauvage, X., Genevois, C., Da Costa, G., Pantsyrny, V., Scripta Mater. 61, 660 (2009).CrossRefGoogle Scholar
73. Sauvage, X., Guillet, A., Blavette, D., Thilly, L., Lecouturier, F., Scripta Mater. 46, 459 (2002).Google Scholar
74. Raabe, D., Hangen, U., Mater. Lett. 22, 155 (1995).Google Scholar
75. Raabe, D., Hangen, U., J. Mater. Res. 10, 3050 (1995).Google Scholar
76. Wang, T.L., Li, J.H., Tai, K.P., Liu, B.X., Scripta Mater. 57, 157 (2007).Google Scholar
77. Koike, J., Parkin, D.M., Nastasi, M., Philos. Mag. Lett. 62, 257 (1990).Google Scholar
78. Rigney, D.A., Fu, X.Y., Hammerberg, J.E., Holian, B.L., Falk, M.L., Scripta Mater. 49, 977 (2003).Google Scholar
79. Moseler, M., Gumbsch, P., Casiraghi, C., Ferrari, A., Robertson, J., Science 309 1545 (2005).Google Scholar
80. Kim, H.-J., Emge, A., Winter, R., Keightley, P., Kim, W.-K., Falk, M.L., Rigney, D.A., Acta Mater. 57, 5270 (2009).Google Scholar