Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T03:10:13.598Z Has data issue: false hasContentIssue false

Nucleation, growth, and superlattice formation of nanocrystals observed in liquid cell transmission electron microscopy

Published online by Cambridge University Press:  10 September 2020

Qian Chen
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, USA; qchen20@illinois.edu
Jong Min Yuk
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; jongmin.yuk@kaist.ac.kr
Matthew R. Hauwiller
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, USA; mhauwill@mit.edu
Jungjae Park
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; jungjae10@kaist.ac.kr
Kyun Seong Dae
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; ddalgi1051@kaist.ac.kr
Jae Sung Kim
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Korea; ijs7596@kaist.ac.kr
A. Paul Alivisatos
Affiliation:
University of California, Berkeley; Kavli Energy Nanoscience Institute; Lawrence Berkeley National Laboratory, USA; paul.alivisatos@berkeley.edu
Get access

Abstract

This article reviews the advancements and prospects of liquid cell transmission electron microscopy (TEM) imaging and analysis methods in understanding the nucleation, growth, etching, and assembly dynamics of nanocrystals. The bonding of atoms into nanoscale crystallites produces materials with nonadditive properties unique to their size and geometry. The recent application of in situ liquid cell TEM to nanocrystal development has initiated a paradigm shift, (1) from trial-and-error synthesis to a mechanistic understanding of the “synthetic reactions” responsible for the emergence of crystallites from a disordered soup of reactive species (e.g., ions, atoms, molecules) and shape-defined growth or etching; and (2) from post-processing characterization of the nanocrystals’ superlattice assemblies to in situ imaging and mapping of the fundamental interactions and energy landscape governing their collective phase behaviors. Imaging nanocrystal formation and assembly processes on the single-particle level in solution immediately impacts many existing fields, including materials science, nanochemistry, colloidal science, biology, environmental science, electrochemistry, mineralization, soft condensed-matter physics, and device fabrication.

Type
Liquid Phase Electron Microscopy
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E., Angew. Chem. Int. Ed. Engl. 48, 60 (2009).CrossRefGoogle Scholar
Liz-Marzán, L.M., Mater. Today 7, 26 (2004).CrossRefGoogle Scholar
Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E., Li, T., J. Phys. Chem. B 109, 13857 (2005).CrossRefGoogle Scholar
Wang, G., Peng, Q., Li, Y., Acc. Chem. Res. 44, 322 (2011).CrossRefGoogle Scholar
Gao, J., Gu, H., Xu, B., Acc. Chem. Res. 42, 1097 (2009).CrossRefGoogle Scholar
Sun, S., Zeng, H., J. Am. Chem. Soc. 124, 8204 (2002).CrossRefGoogle Scholar
Smith, A.M., Nie, S., Acc. Chem. Res. 43, 190 (2010).CrossRefGoogle Scholar
Collier, C.P., Vossmeyer, T., Heath, J.R., Annu. Rev. Phys. Chem. 49, 371 (1998).CrossRefGoogle Scholar
Boles, M.A., Engel, M., Talapin, D.V., Chem. Rev. 116, 11220 (2016).CrossRefGoogle Scholar
Wang, T., LaMontagne, D., Lynch, J., Zhuang, J., Cao, Y.C., Chem. Soc. Rev. 42, 2804 (2013).CrossRefGoogle Scholar
Yang, X., Yang, M., Pang, B., Vara, M., Xia, Y., Chem. Rev. 115, 10410 (2015).CrossRefGoogle Scholar
Li, Z., Sun, Q., Zhu, Y., Tan, B., Xu, Z.P., Dou, S.X., J. Mater. Chem. B 2, 2793 (2014).CrossRefGoogle Scholar
Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J., El-Sayed, M.A., Chem. Soc. Rev. 41, 2740 (2012).CrossRefGoogle Scholar
Cao, Y.C., Jin, R., Mirkin, C.A., Science 297, 1536 (2002).CrossRefGoogle Scholar
Mayer, K.M., Hafner, J.H., Chem. Rev. 111, 3828 (2011).CrossRefGoogle Scholar
Konstantatos, G., Sargent, E.H., Nat. Nanotechnol. 5, 391 (2010).CrossRefGoogle Scholar
Ye, S., Rathmell, A.R., Chen, Z., Stewart, I.E., Wiley, B.J., Adv. Mater. 26, 6670 (2014).CrossRefGoogle Scholar
Lal, S., Link, S., Halas, N.J., Nat. Photonics 1, 641 (2007).CrossRefGoogle Scholar
Geng, Y., van Anders, G., Dodd, P.M., Dshemuchadse, J., Glotzer, S.C., Sci. Adv. 5, eaaw0514 (2019).Google Scholar
Morphew, D., Shaw, J., Avins, C., Chakrabarti, D., ACS Nano 12, 2355 (2018).CrossRefGoogle Scholar
Jia, Z., Liu, F., Jiang, X., Wang, L., J. Appl. Phys. 127, 150901 (2020).CrossRefGoogle Scholar
Nai, J., Wang, S., Lou, X.W.D., Sci. Adv. 5, eaax5095 (2019).CrossRefGoogle Scholar
Kadic, M., Milton, G.W., van Hecke, M., Wegener, M., Nat. Rev. Phys. 1, 198 (2019).CrossRefGoogle Scholar
Yang, T.-H., Shi, Y., Janssen, A., Xia, Y., Angew. Chem. Int. Ed. Engl. (2019), doi:10.1002/anie.201911135.Google Scholar
Krylova, G., Giovanetti, L.J., Requejo, F.G., Dimitrijevic, N.M., Prakapenka, A., Shevchenko, E.V., J. Am. Chem. Soc. 134, 4384 (2012).CrossRefGoogle Scholar
Halpert, J.E., Porter, V.J., Zimmer, J.P., Bawendi, M.G., J. Am. Chem. Soc. 128, 12590 (2006).CrossRefGoogle Scholar
Mokari, T., Sztrum, C.G., Salant, A., Rabani, E., Banin, U., Nat. Mater. 4, 855 (2005).CrossRefGoogle Scholar
Mazumder, V., Chi, M., More, K.L., Sun, S., Angew. Chem. Int. Ed. Engl. 49, 9368 (2010).CrossRefGoogle Scholar
Mokari, T., Rothenberg, E., Popov, I., Costi, R., Banin, U., Science 304, 1787 (2004).CrossRefGoogle Scholar
Xia, Y., Gilroy, K.D., Peng, H.-C., Xia, X., Angew. Chem. Int. Ed. Engl. 56, 60 (2017).CrossRefGoogle Scholar
Wang, C., Daimon, H., Sun, S., Nano Lett. 9, 1493 (2009).CrossRefGoogle Scholar
Guix, M., Weiz, S.M., Schmidt, O.G., Medina-Sánchez, M., Part. Part. Syst. Charact. 35, 1700382 (2018).CrossRefGoogle Scholar
Kwon, S.G., Krylova, G., Phillips, P.J., Klie, R.F., Chattopadhyay, S., Shibata, T., Bunel, E.E., Liu, Y., Prakapenka, V.B., Lee, B., Shevchenko, E.V., Nat. Mater. 14, 215 (2015).CrossRefGoogle Scholar
Macfarlane, R.J., Lee, B., Jones, M.R., Harris, N., Schatz, G.C., Mirkin, C.A., Science 334, 204 (2011).CrossRefGoogle Scholar
Wu, L., Willis, J.J., McKay, I.S., Diroll, B.T., Qin, J., Cargnello, M., Tassone, C.J., Nature 548, 197 (2017).CrossRefGoogle Scholar
Weidman, M.C., Smilgies, D.-M., Tisdale, W.A., Nat. Mater. 15, 775 (2016).CrossRefGoogle Scholar
Geuchies, J.J., van Overbeek, C., Evers, W.H., Goris, B., de Backer, A., Gantapara, A.P., Rabouw, F.T., Hilhorst, J., Peters, J.L., Konovalov, O., Petukhov, A.V., Dijkstra, M., Siebbeles, L.D.A., van Aert, S., Bals, S., Vanmaekelbergh, D., Nat. Mater. 15, 1248 (2016).CrossRefGoogle Scholar
Wu, L., Wang, X., Wang, G., Chen, G., Nat. Commun. 9, 1335 (2018).CrossRefGoogle Scholar
De Yoreo, J.J., Chung, S., Friddle, R.W., Adv. Funct. Mater. 23, 2525 (2013).CrossRefGoogle Scholar
Mirabello, G., Ianiro, A., Bomans, P.H.H., Yoda, T., Arakaki, A., Friedrich, H., de With, G., Sommerdijk, N.A.J.M., Nat. Mater. 19, 391 (2020).CrossRefGoogle Scholar
Damasceno, P.F., Engel, M., Glotzer, S.C., Science 337, 453 (2012).CrossRefGoogle Scholar
Ye, X., Collins, J.E., Kang, Y., Chen, J., Chen, D.T.N., Yodh, A.G., Murray, C.B., Proc. Natl. Acad. Sci. U.S.A. 107, 22430 (2010).CrossRefGoogle Scholar
Talapin, D.V., Shevchenko, E.V., Bodnarchuk, M.I., Ye, X., Chen, J., Murray, C.B., Nature 461, 964 (2009).CrossRefGoogle Scholar
Auyeung, E., Li, T.I.N.G., Senesi, A.J., Schmucker, A.L., Pals, B.C., de La Cruz, M.O., Mirkin, C.A., Nature 505, 73 (2014).CrossRefGoogle Scholar
Ross, F.M., Science 350, aaa9886 (2015).CrossRefGoogle Scholar
Park, J., Elmlund, H., Ercius, P., Yuk, J.M., Limmer, D.T., Chen, Q., Kim, K., Han, S.H., Weitz, D.A., Zettl, A., Alivisatos, A.P., Science 349, 290 (2015).CrossRefGoogle Scholar
Ye, X., Jones, M.R., Frechette, L.B., Chen, Q., Powers, A.S., Ercius, P., Dunn, G., Rotskoff, G.M., Nguyen, S.C., Adiga, V.P., Zettl, A., Rabani, E., Geissler, P.L., Alivisatos, A.P., Science 354, 874 (2016).CrossRefGoogle Scholar
Chen, Q., Cho, H., Manthiram, K., Yoshida, M., Ye, X., Alivisatos, A.P., ACS Cent. Sci. 1, 33 (2015).CrossRefGoogle Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R., Ross, F.M., Nat. Mater. 2, 532 (2003).CrossRefGoogle Scholar
Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C., Ross, F.M., Nano Lett. 6, 238 (2006).CrossRefGoogle Scholar
de Jonge, N., Ross, F.M., Nat. Nanotechnol. 6, 695 (2011).CrossRefGoogle Scholar
Woehl, T.J., Evans, J.E., Arslan, I., Ristenpart, W.D., Browning, N.D., ACS Nano 6, 8599 (2012).CrossRefGoogle Scholar
Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U., Alivisatos, A.P., Science 324, 1309 (2009).CrossRefGoogle Scholar
Liao, H.-G., Cui, L., Whitelam, S., Zheng, H., Science 336, 1011 (2012).CrossRefGoogle Scholar
Liao, H.-G., Zheng, H., J. Am. Chem. Soc. 135, 5038 (2013).CrossRefGoogle Scholar
Liao, H.-G., Niu, K., Zheng, H., Chem. Commun. 49, 11720 (2013).CrossRefGoogle Scholar
Liao, H.-G., Zherebetskyy, D., Xin, H., Czarnik, C., Ercius, P., Elmlund, H., Pan, M., Wang, L.-W., Zheng, H., Science 345, 916 (2014).CrossRefGoogle Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A., Alivisatos, A.P., Science 336, 61 (2012).CrossRefGoogle Scholar
Jeong, M., Yuk, J.M., Lee, J.Y., Chem. Mater. 27, 3200 (2015).CrossRefGoogle Scholar
Yuk, J.M., Zhou, Q., Chang, J., Ercius, P., Alivisatos, A.P., Zettl, A., ACS Nano 10, 88 (2016).CrossRefGoogle Scholar
Kim, S.Y., Dae, K.S., Koo, K., Kim, D., Park, J., Yuk, J.M., Phys. Status Solidi A 216, 1800949 (2019).CrossRefGoogle Scholar
Loh, N.D., Sen, S., Bosman, M., Tan, S.F., Zhong, J., Nijhuis, C.A., Král, P., Matsudaira, P., Mirsaidov, U., Nat. Chem. 9, 77 (2017).CrossRefGoogle Scholar
Burley, J.C., Duer, M.J., Stein, R.S., Vrcelj, R.M., Eur. J. Pharm. Sci. 31, 271 (2007).CrossRefGoogle Scholar
Sake Gowda, D.S., Rudman, R., J. Phys. Chem. 86, 4356 (1982).CrossRefGoogle Scholar
Rengarajan, G.T., Enke, D., Steinhart, M., Beiner, M., Phys. Chem. Chem. Phys. 13, 21367 (2011).CrossRefGoogle Scholar
Nielsen, M.H., Aloni, S., De Yoreo, J.J., Science 345, 1158 (2014).CrossRefGoogle Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D., Arslan, I., Nano Lett. 11, 2809 (2011).CrossRefGoogle Scholar
Schneider, N.M., Norton, M.M., Mendel, B.J., Grogan, J.M., Ross, F.M., Bau, H.H., J. Phys. Chem. C 118, 22373 (2014).CrossRefGoogle Scholar
Grogan, J.M., Schneider, N.M., Ross, F.M., Bau, H.H., Nano Lett. 14, 359 (2014).CrossRefGoogle Scholar
Woehl, T.J., Moser, T., Evans, J.E., Ross, F.M., MRS Bull. 45 (9), 746 (2020).Google Scholar
De Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., Penn, R.L., Whitelam, S., Joester, D., Zhang, H., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Michel, F.M., Meldrum, F.C., Cölfen, H., Dove, P.M., Science 349, aaa6760 (2015).CrossRefGoogle Scholar
Vekilov, P.G., Nanoscale 2, 2346 (2010).CrossRefGoogle Scholar
De Yoreo, J., Nat. Mater. 12, 284 (2013).CrossRefGoogle Scholar
Cahn, J.W., Hilliard, J.E., J. Chem. Phys. 31, 688 (1959).CrossRefGoogle Scholar
Yuk, J.M., Kim, K., Alemán, B., Regan, W., Ryu, J.H., Park, J., Ercius, P., Lee, H.M., Alivisatos, A.P., Crommie, M.F., Lee, J.Y., Zettl, A., Nano Lett. 11, 3290 (2011).CrossRefGoogle Scholar
Daniel, M.-C., Astruc, D., Chem. Rev. 104, 293 (2004).CrossRefGoogle Scholar
Zhu, G., Jiang, Y., Lin, F., Zhang, H., Jin, C., Yuan, J., Yang, D., Zhang, Z., Chem. Commun. 50, 9447 (2014).CrossRefGoogle Scholar
Xin, H.L., Zheng, H., Nano Lett. 12, 1470 (2012).CrossRefGoogle Scholar
Parent, L.R., Robinson, D.B., Woehl, T.J., Ristenpart, W.D., Evans, J.E., Browning, N.D., Arslan, I., ACS Nano 6, 3589 (2012).CrossRefGoogle Scholar
Jungjohann, K.L., Bliznakov, S., Sutter, P.W., Stach, E.A., Sutter, E.A., Nano Lett. 13, 2964 (2013).CrossRefGoogle Scholar
Sutter, E., Jungjohann, K., Bliznakov, S., Courty, A., Maisonhaute, E., Tenney, S., Sutter, P., Nat. Commun. 5, 4946 (2014).CrossRefGoogle Scholar
Song, R.-Q., Cölfen, H., CrystEngComm 13, 1249 (2011).CrossRefGoogle Scholar
Han, Y.S., Hadiko, G., Fuji, M., Takahashi, M., J. Cryst. Growth 289, 269 (2006).Google Scholar
Hu, Y.-B., Wolthers, M., Wolf-Gladrow, D.A., Nehrke, G., Cryst. Growth Des. 15, 1596 (2015).CrossRefGoogle Scholar
Trushina, D.B., Bukreeva, T.V., Antipina, M.N., Cryst. Growth Des. 16, 1311 (2016).CrossRefGoogle Scholar
Liu, L., Zhang, S., Bowden, M.E., Chaudhuri, J., De Yoreo, J.J., Cryst. Growth Des. 18, 1367 (2018).CrossRefGoogle Scholar
Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F., De Yoreo, J.J., Science 336, 1014 (2012).CrossRefGoogle Scholar
Liu, Z., Zhang, Z., Wang, Z., Jin, B., Li, D., Tao, J., Tang, R., de Yoreo, J.J., Proc. Natl. Acad. Sci. U.S.A. 117, 3397 (2020).CrossRefGoogle Scholar
Smeets, P.J.M., Cho, K.R., Kempen, R.G.E., Sommerdijk, N.A.J.M., De Yoreo, J.J., Nat. Mater. 14, 394 (2015).CrossRefGoogle Scholar
Ruditskiy, A., Xia, Y., ACS Nano 11, 23 (2017).CrossRefGoogle Scholar
Jiang, Y., Zhu, G., Lin, F., Zhang, H., Jin, C., Yuan, J., Yang, D., Zhang, Z., Nano Lett. 14, 3761 (2014).CrossRefGoogle Scholar
Jiang, Y., Zhu, G., Dong, G., Lin, F., Zhang, H., Yuan, J., Zhang, Z., Jin, C., Micron. 97, 22 (2017).CrossRefGoogle Scholar
Wu, J., Gao, W., Yang, H., Zuo, J.-M., ACS Nano 11, 1696 (2017).CrossRefGoogle Scholar
Gao, W., Hou, Y., Hood, Z.D., Wang, X., More, K., Wu, R., Xia, Y., Pan, X., Chi, M., Nano Lett. 18, 7004 (2018).CrossRefGoogle Scholar
Hauwiller, M.R., Ondry, J.C., Alivisatos, A.P., J. Vis. Exp. 2018, e57665 (2018).Google Scholar
Hauwiller, M.R., Frechette, L.B., Jones, M.R., Ondry, J.C., Rotskoff, G.M., Geissler, P., Alivisatos, A.P., Nano Lett. 18, 5731 (2018).CrossRefGoogle Scholar
Hauwiller, M.R., Ondry, J.C., Chan, C.M., Khandekar, P., Yu, J., Alivisatos, A.P., J. Am. Chem. Soc. 141, 4428 (2019).CrossRefGoogle Scholar
Chen, L., Leonardi, A., Chen, J., Cao, M., Li, N., Su, D., Zhang, Q., Engel, M., Ye, X., Nat. Commun. 11, 3041 (2020).CrossRefGoogle Scholar
Tan, S.F., Chee, S.W., Baraissov, Z., Jin, H., Tan, T.L., Mirsaidov, U., J. Phys. Chem. Lett. 10, 6090 (2019).CrossRefGoogle Scholar
Sung, J., Choi, B.K., Kim, B., Kim, B.H., Kim, J., Lee, D., Kim, S., Kang, K., Hyeon, T., Park, J., J. Am. Chem. Soc. 141, 18395 (2019).CrossRefGoogle Scholar
Aabdin, Z., Xu, X.M., Sen, S., Anand, U., Král, P., Holsteyns, F., Mirsaidov, U., Nano Lett. 17, 2953 (2017).CrossRefGoogle Scholar
Baraissov, Z., Pacco, A., Koneti, S., Bisht, G., Panciera, F., Holsteyns, F., Mirsaidov, U., ACS Appl. Mater. Interfaces 11, 36839 (2019).CrossRefGoogle Scholar
Hufschmid, R., Teeman, E., Mehdi, B.L., Krishnan, K.M., Browning, N.D., Nanoscale 11, 13098 (2019).CrossRefGoogle Scholar
Lin, H., Lee, S., Sun, L., Spellings, M., Engel, M., Glotzer, S.C., Mirkin, C.A., Science 355, 931 (2017).CrossRefGoogle Scholar
Ye, X., Chen, J., Irrgang, M.E., Engel, M., Dong, A., Glotzer, S.C., Murray, C.B., Nat. Mater. 16, 214 (2017).CrossRefGoogle Scholar
Boles, M.A., Talapin, D.V., J. Am. Chem. Soc. 137, 4494 (2015).CrossRefGoogle Scholar
Ye, X., Millan, J.A., Engel, M., Chen, J., Diroll, B.T., Glotzer, S.C., Murray, C.B., Nano Lett. 13, 4980 (2013).CrossRefGoogle Scholar
Bishop, K.J.M., Wilmer, C.E., Soh, S., Grzybowski, B.A., Small 5, 1600 (2009).CrossRefGoogle Scholar
Lee, J., Nakouzi, E., Xiao, D., Wu, Z., Song, M., Ophus, C., Chun, J., Li, D., Small 15, 1901966 (2019).CrossRefGoogle Scholar
Batista, C.A.S., Larson, R.G., Kotov, N.A., Science 350, 1242477 (2015).CrossRefGoogle Scholar
French, R.H., Parsegian, V.A., Podgornik, R., Rajter, R.F., Jagota, A., Luo, J., Asthagiri, D., Chaudhury, M.K., Chiang, Y.-M., Granick, S., Kalinin, S., Kardar, M., Kjellander, R., Langreth, D.C., Lewis, J., Lustig, S., Wesolowski, D., Wettlaufer, J.S., Ching, W.-Y., Finnis, M., Houlihan, F., von Lilienfeld, O.A., van Oss, C.J., Zemb, T., Rev. Mod. Phys. 82, 1887 (2010).CrossRefGoogle Scholar
Ou, Z., Kim, A., Huang, W., Braun, P.V., Li, X., Chen, Q., Curr. Opin. Solid State Mater. Sci. 23, 41 (2019).CrossRefGoogle Scholar
Harper, E.S., van Anders, G., Glotzer, S.C., Proc. Natl. Acad. Sci. U.S.A. 116, 16703 (2019).CrossRefGoogle Scholar
Park, J., Zheng, H., Lee, W.C., Geissler, P.L., Rabani, E., Alivisatos, A.P., ACS Nano 6, 2078 (2012).CrossRefGoogle Scholar
Lee, J., Nakouzi, E., Song, M., Wang, B., Chun, J., Li, D., ACS Nano 12, 12778 (2018).CrossRefGoogle Scholar
Powers, A.S., Liao, H.-G., Raja, S.N., Bronstein, N.D., Alivisatos, A.P., Zheng, H., Nano Lett. 17, 15 (2017).CrossRefGoogle Scholar
Sutter, E., Sutter, P., Tkachenko, A.V., Krahne, R., de Graaf, J., Arciniegas, M., Manna, L., Nat. Commun. 7, 11213 (2016).CrossRefGoogle Scholar
Kim, J., Ou, Z., Jones, M.R., Song, X., Chen, Q., Nat. Commun. 8, 761 (2017).CrossRefGoogle Scholar
Yao, L., Ou, Z., Luo, B., Xu, C., Chen, Q., ACS Cent. Sci. (2020), doi:10.1021/acscentsci.0c00430.Google Scholar
Zheng, H., Claridge, S.A., Minor, A.M., Alivisatos, A.P., Dahmen, U., Nano Lett. 9, 2460 (2009).CrossRefGoogle Scholar
Batson, P.E., Reyes-Coronado, A., Barrera, R.G., Rivacoba, A., Echenique, P.M., Aizpurua, J., Nano Lett. 11, 3388 (2011).CrossRefGoogle Scholar
Zheng, H., Mirsaidov, U.M., Wang, L.-W., Matsudaira, P., Nano Lett. 12, 5644 (2012).CrossRefGoogle Scholar
Kim, J., Jones, M.R., Ou, Z., Chen, Q., ACS Nano 10, 9801 (2016).CrossRefGoogle Scholar
Ou, Z., Wang, Z., Luo, B., Luijten, E., Chen, Q., Nat. Mater. 19, 450 (2020).CrossRefGoogle Scholar
Wang, M., Dissanayake, T.U., Park, C., Gaskell, K., Woehl, T.J., J. Am. Chem. Soc. 141, 13516 (2019).CrossRefGoogle Scholar
Liu, C., Ou, Z., Guo, F., Luo, B., Chen, W., Qi, L., Chen, Q., J. Am. Chem. Soc. 142, 11669 (2020).CrossRefGoogle Scholar
Crocker, J.C., Grier, D.G., J. Colloid Interface Sci. 179, 298 (1996).CrossRefGoogle Scholar
Peng, Y., Wang, F., Wang, Z., Alsayed, A.M., Zhang, Z., Yodh, A.G., Han, Y., Nat. Mater. 14, 101 (2015).CrossRefGoogle Scholar
Gruebele, M., Dave, K., Sukenik, S., Annu. Rev. Biophys. 45, 233 (2016).CrossRefGoogle Scholar
Teif, V.B., Bohinc, K., Prog. Biophys. Mol. Biol. 105, 208 (2011).CrossRefGoogle Scholar
Cepeda-Perez, E., Doblas, D., Kraus, T., de Jonge, N., Sci. Adv. 6, eaba1404 (2020).CrossRefGoogle Scholar
Chee, S.W., Anand, U., Bisht, G., Tan, S.F., Mirsaidov, U., Nano Lett. 19, 2871 (2019).CrossRefGoogle Scholar
de Jonge, N., Houben, L., Dunin-Borkowski, R.E., Ross, F.M., Nat. Rev. Mater. 4, 61 (2019).CrossRefGoogle Scholar
Yesibolati, M.N., Laganà, S., Sun, H., Beleggia, M., Kathmann, S.M., Kasama, T., Mølhave, K., Phys. Rev. Lett. 124, 065502 (2020).CrossRefGoogle Scholar