Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T15:11:28.265Z Has data issue: false hasContentIssue false

Separation using self-assembled materials

Published online by Cambridge University Press:  09 October 2020

Fan Chen
Affiliation:
Texas A&M University, USA; fanchen2018@tamu.edu
Gregory S. Day
Affiliation:
Texas A&M University, USA; grsday@tamu.edu
Hong-Cai Zhou
Affiliation:
Texas A&M University, USA; zhouh@tamu.edu
Get access

Abstract

One of the leading challenges in chemical sciences is the separation of complex mixtures. This is of vital importance for areas such as commodity chemical generation, where there is a need for the generation of high-purity chemical streams. Due to this, there has been a strong push toward the investigation of new materials capable of achieving chemoselective separation, with self-assembled materials having shown a great deal of promise for such separations. Many self-assembled materials are desirable candidates due to their low-cost synthesis, structural self-regulation, tunable properties, and an overall ease of composite material preparation. In this article, we aim to introduce examples of novel self-assembled materials and their practical usage in chemical separations. The specific approaches to fabricate these materials, as well as the strengths and shortcomings associated with their structures, will also be described. The strategies presented here will emphasize the production and employment of nonconventional self-assembled materials that exhibit a high potential for the advancement of the science of chemical separations.

Type
Functional Materials and Devices by Self-Assembly
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sholl, D.S., Lively, R.P., Nature 532, 435 (2016).10.1038/532435aCrossRefGoogle Scholar
Verma, G., Hassan, P.A., Phys. Chem. Chem. Phys. 15, 17016 (2013).10.1039/c3cp51207jCrossRefGoogle Scholar
Zhu, K., Wang, D., Liu, J., Nano Res. 2, 1 (2010).10.1007/s12274-009-9002-2CrossRefGoogle Scholar
Praveen, V.K., Vedhanarayanan, B., Mal, A., Mishra, R.K., Ajayaghosh, A., Acc. Chem. Res. 53, 496 (2020).10.1021/acs.accounts.9b00580CrossRefGoogle Scholar
van Rijn, P., Tutus, M., Kathrein, C., Zhu, L., Wessling, M., Schwaneberg, U., Boker, A., Chem. Soc. Rev. 42, 6578 (2013).10.1039/c3cs60125kCrossRefGoogle Scholar
Ariga, K., Nishikawa, M., Mori, T., Takeya, J., Shrestha, L.K., Hill, J.P., Sci. Technol. Adv. Mater. 20, 51 (2019).10.1080/14686996.2018.1553108CrossRefGoogle Scholar
Denny, M.S., Moreton, J.C., Benz, L., Cohen, S.M., Nat. Rev. Mater. 1, 16078 (2016).10.1038/natrevmats.2016.78CrossRefGoogle Scholar
Yuan, S., Feng, L., Wang, K., Pang, J., Bosch, M., Lollar, C., Sun, Y., Qin, J., Yang, X., Zhang, P., Wang, Q., Zou, L., Zhang, Y., Zhang, L., Fang, Y., Li, J., Zhou, H.C., Adv. Mater. 30, 1704303 (2018).10.1002/adma.201704303CrossRefGoogle Scholar
Li, H., Wang, K., Sun, Y., Lollar, C.T., Li, J., Zhou, H.-C., Mater. Today 21, 108 (2018).10.1016/j.mattod.2017.07.006CrossRefGoogle Scholar
Kumar, P., Deep, A., Kim, K.-H., Trends Anal. Chem. 73, 39 (2015).10.1016/j.trac.2015.04.009CrossRefGoogle Scholar
Baumann, A.E., Burns, D.A., Liu, B., Thoi, V.S., Commun. Chem. 2, 86 (2019).10.1038/s42004-019-0184-6CrossRefGoogle Scholar
Carrillo-Carrion, C., Anal. Bioanal. Chem. 412, 37 (2020).10.1007/s00216-019-02217-yCrossRefGoogle Scholar
Gu, Q., Ng, H.Y., Zhao, D., Wang, J., APL Mater. 8, 040902 (2020).10.1063/5.0002905CrossRefGoogle Scholar
Pascanu, V., Gonzalez Miera, G., Inge, A.K., Martin-Matute, B., J. Am. Chem. Soc. 141, 7223 (2019).10.1021/jacs.9b00733CrossRefGoogle Scholar
Furukawa, H., Cordova, K.E., O'Keeffe, M., Yaghi, O.M., Science 341, 974 (2013).10.1126/science.1230444CrossRefGoogle Scholar
Lin, R.-B., Xiang, S., Zhou, W., Chen, B., Chemistry 6, 337 (2020).10.1016/j.chempr.2019.10.012CrossRefGoogle Scholar
Kang, Z., Fan, L., Sun, D., J. Mater. Chem. A 5, 10073 (2017).10.1039/C7TA01142CCrossRefGoogle Scholar
NOAA, Global Climate Report—April 2020, https://www.ncdc.noaa.gov/sotc/global/202004.Google Scholar
Lin, R.-B., Xiang, S., Xing, H., Zhou, W., Chen, B., Coord. Chem. Rev. 378, 87 (2019).10.1016/j.ccr.2017.09.027CrossRefGoogle Scholar
Bastin, L., Bárcia, P.S., Hurtado, E.J., Silva, J.A.C., Rodrigues, A.E., Chen, B., J. Phys. Chem. C 112, 1575 (2008).10.1021/jp077618gCrossRefGoogle Scholar
Siegelman, R.L., McDonald, T.M., Gonzalez, M.I., Martell, J.D., Milner, P.J., Mason, J.A., Berger, A.H., Bhown, A.S., Long, J.R., J. Am. Chem. Soc. 139, 10526 (2017).10.1021/jacs.7b05858CrossRefGoogle Scholar
Ye, Y., Ma, Z., Lin, R.B., Krishna, R., Zhou, W., Lin, Q., Zhang, Z., Xiang, S., Chen, B., J. Am. Chem. Soc. 141, 4130 (2019).10.1021/jacs.9b00232CrossRefGoogle Scholar
Xiang, S.C., Zhang, Z., Zhao, C.G., Hong, K., Zhao, X., Ding, D.R., Xie, M.H., Wu, C.D., Das, M.C., Gill, R., Thomas, K.M., Chen, B., Nat. Commun. 2, 204 (2011).10.1038/ncomms1206CrossRefGoogle Scholar
Kim, H., Yang, S., Rao, S.R., Narayanan, S., Kapustin, E.A., Furukawa, H., Umans, A.S., Yaghi, O.M., Wang, E.N., Science 356, 430 (2017).10.1126/science.aam8743CrossRefGoogle Scholar
Dong, G., Li, H., Chen, V., J. Mater. Chem. A 1, 4610 (2013).10.1039/c3ta00927kCrossRefGoogle Scholar
Robeson, L.M., J. Membr. Sci. 62, 165 (1991).10.1016/0376-7388(91)80060-JCrossRefGoogle Scholar
Yu, G., Zou, X., Sun, L., Liu, B., Wang, Z., Zhang, P., Zhu, G., Adv. Mater. 31, 1806853 (2019).10.1002/adma.201806853CrossRefGoogle Scholar
Chaemchuen, S., Wang, J., Gilani, A., Francis, F.Resour.-Effic. Technol. 1, 1 (2018).Google Scholar
Bedia, J., Muelas-Ramos, V., Peñas-Garzón, M., Gómez-Avilés, A., Rodríguez, J.J., Belver, C., Catalysts 9, 52 (2019).10.3390/catal9010052CrossRefGoogle Scholar
Kadhom, M., Deng, B., Appl. Mater. Today 11, 219 (2018).10.1016/j.apmt.2018.02.008CrossRefGoogle Scholar
Dhaka, S., Kumar, R., Deep, A., Kurade, M.B., Ji, S.-W., Jeon, B.-H., Coord. Chem. Rev. 380, 330 (2019).10.1016/j.ccr.2018.10.003CrossRefGoogle Scholar
Mon, M., Bruno, R., Ferrando-Soria, J., Armentano, D., Pardo, E., J. Mater. Chem. A 6, 4912 (2018).10.1039/C8TA00264ACrossRefGoogle Scholar
Elrasheedy, A., Nady, N., Bassyouni, M., El-Shazly, A., Membranes 9, 88 (2019).CrossRefGoogle ScholarPubMed
Bellarosa, L., Calero, S., Lopez, N., Phys. Chem. Chem. Phys. 14, 7240 (2012).10.1039/c2cp40339kCrossRefGoogle Scholar
Wang, S., Wang, J., Cheng, W., Yang, X., Zhang, Z., Xu, Y., Liu, H., Wu, Y., Fang, M., Dalton Trans. 44, 8049 (2015).10.1039/C5DT00421GCrossRefGoogle Scholar
Wang, L., Zhao, X., Zhang, J., Xiong, Z., Environ. Sci. Pollut. Res. Int. 24, 14198 (2017).10.1007/s11356-017-9002-9CrossRefGoogle Scholar
Saleem, H., Rafique, U., Davies, R.P., Microporous Mesoporous Mater. 221, 238 (2016).CrossRefGoogle Scholar
Bu, Q., Wang, B., Huang, J., Deng, S., Yu, G., J. Hazard. Mater. 262, 189 (2013).10.1016/j.jhazmat.2013.08.040CrossRefGoogle Scholar
Jin, W.G., Chen, W., Xu, P.H., Lin, X.W., Huang, X.C., Chen, G.H., Lu, F., Chen, X.M., Chemistry 23, 13058 (2017).CrossRefGoogle Scholar
Lan, X., Zhang, H., Bai, P., Guo, X., Microporous Mesoporous Mater. 231, 40 (2016).10.1016/j.micromeso.2016.05.023CrossRefGoogle Scholar
Wang, C., Liu, X., Chen, J.P., Li, K., Sci. Rep. 5, 16613 (2015).CrossRefGoogle Scholar
Bai, Z.-Q., Yuan, L.-Y., Zhu, L., Liu, Z.-R., Chu, S.-Q., Zheng, L.-R., Zhang, J., Chai, Z.-F., Shi, W.-Q., J. Mater. Chem. A 3, 525 (2015).CrossRefGoogle Scholar
Jung, B.K., Jun, J.W., Hasan, Z., Jhung, S.H., Chem. Eng. J. 267, 9 (2015).CrossRefGoogle Scholar
Zhu, X., Li, B., Yang, J., Li, Y., Zhao, W., Shi, J., Gu, J., ACS Appl. Mater. Interfaces 7, 223 (2015).10.1021/am5059074CrossRefGoogle Scholar
Meng, A.N., Chaihu, L.X., Chen, H.H., Gu, Z.Y., Sci. Rep. 7, 6297 (2017).CrossRefGoogle Scholar
He, Y.-C., Yang, J., Kan, W.-Q., Zhang, H.-M., Liu, Y.-Y., Ma, J.-F., J. Mater. Chem. A 3, 1675 (2015).CrossRefGoogle Scholar
Liu, X.L., Li, Y.S., Zhu, G.Q., Ban, Y.J., Xu, L.Y., Yang, W.S., Angew. Chem. Int. Ed. 50, 10636 (2011).Google Scholar
Wang, H., Zhao, S., Liu, Y., Yao, R., Wang, X., Cao, Y., Ma, D., Zou, M., Cao, A., Feng, X., Wang, B., Nat. Commun. 10, 4204 (2019).10.1038/s41467-019-12114-8CrossRefGoogle Scholar
Küsgens, P., Rose, M., Senkovska, I., Fröde, H., Henschel, A., Siegle, S., Kaskel, S., Microporous Mesoporous Mater. 120, 325 (2009).10.1016/j.micromeso.2008.11.020CrossRefGoogle Scholar
Wang, H., Chung, T.S., Tong, Y.W., Jeyaseelan, K., Armugam, A., Chen, Z., Hong, M., Meier, W., Small 8, 1185 (2012).CrossRefGoogle ScholarPubMed
Cheng, L., Yang, L., Meng, F., Zhong, Z., Adv. Healthc. Mater. 7, 1800685 (2018).10.1002/adhm.201800685CrossRefGoogle Scholar
Chimisso, V., Maffeis, V., Hurlimann, D., Palivan, C.G., Meier, W., Macromol. Biosci. 20, 1900257 (2020).10.1002/mabi.201900257CrossRefGoogle Scholar
Wong, C.K., Qiang, X., Müller, A.H.E., Gröschel, A.H., Prog. Polym. Sci. 102, 101211 (2020).10.1016/j.progpolymsci.2020.101211CrossRefGoogle Scholar
Penfold, N.J.W., Yeow, J., Boyer, C., Armes, S.P., ACS Macro Lett. 8, 1029 (2019).CrossRefGoogle Scholar
Jain, A., Weathers, C., Kim, J., Meyer, M.D., Walker, W.S., Li, Q., Verduzco, R., Mol. Syst. Des. Eng. 4, 348 (2019).CrossRefGoogle Scholar
Liu, S., Wang, Z., Ban, M., Song, P., Song, X., Khan, B., J. Membr. Sci. 566, 168 (2018).10.1016/j.memsci.2018.09.002CrossRefGoogle Scholar
Yu, H., Qiu, X., Nunes, S.P., Peinemann, K.V., Nat. Commun. 5, 4110 (2014).10.1038/ncomms5110CrossRefGoogle Scholar
AlMarzooqi, F.A., Al Ghaferi, A.A., Saadat, I., Hilal, N., Desalination 342, 3 (2014).CrossRefGoogle Scholar
Zhang, Y., Almodovar-Arbelo, N.E., Weidman, J.L., Corti, D.S., Boudouris, B.W., Phillip, W.A., NPJ Clean Water 1, 2 (2018).10.1038/s41545-018-0002-1CrossRefGoogle Scholar
Kaner, P., Bengani-Lutz, P., Sadeghi, I., Asatekin, A., Technology 04, 217 (2017).10.1142/S2339547816500096CrossRefGoogle Scholar
Glater, J., Desalination 117, 297 (1998).10.1016/S0011-9164(98)00122-2CrossRefGoogle Scholar
Zhong, P.S., Chung, T.-S., Jeyaseelan, K., Armugam, A., J. Membr. Sci. 407, 27 (2012).10.1016/j.memsci.2012.03.033CrossRefGoogle Scholar
Lu, X., Feng, X., Yang, Y., Jiang, J., Cheng, W., Liu, C., Gopinadhan, M., Osuji, C.O., Ma, J., Elimelech, M., Nat. Commun. 10, 2347 (2019).CrossRefGoogle Scholar
An, A.K., Guo, J., Jeong, S., Lee, E.J., Tabatabai, S.A.A., Leiknes, T., Water Res. 103, 362 (2016).CrossRefGoogle Scholar
Zhou, H.J., Yang, G.W., Zhang, Y.Y., Xu, Z.K., Wu, G.P., ACS Nano 12, 11471 (2018).10.1021/acsnano.8b06521CrossRefGoogle Scholar
Pullen, S., Clever, G.H., Acc. Chem. Res. 51, 3052 (2018).CrossRefGoogle Scholar
Rizzuto, F.J., von Krbek, L.K.S., Nitschke, J.R., Nat. Rev. Chem. 3, 204 (2019).10.1038/s41570-019-0085-3CrossRefGoogle Scholar
Andres, M.A., Carne-Sanchez, A., Sanchez-Lainez, J., Roubeau, O., Coronas, J., Maspoch, D., Gascon, I., Chemistry 26, 143 (2020).10.1002/chem.201904141CrossRefGoogle Scholar
Ghalei, B., Sakurai, K., Kinoshita, Y., Wakimoto, K., Isfahani, A.P., Song, Q., Doitomi, K., Furukawa, S., Hirao, H., Kusuda, H., Kitagawa, S., Sivaniah, E., Nat. Energy 2, 17086 (2017).Google Scholar
Bachman, J.E., Smith, Z.P., Li, T., Xu, T., Long, J.R., Nat. Mater. 15, 845 (2016).CrossRefGoogle Scholar
Liu, X., Wang, X., Bavykina, A.V., Chu, L., Shan, M., Sabetghadam, A., Miro, H., Kapteijn, F., Gascon, J., ACS Appl. Mater. Interfaces 10, 21381 (2018).CrossRefGoogle ScholarPubMed
Perez, E.V., Balkus, K.J., Ferraris, J.P., Musselman, I.H., J. Membr. Sci. 463, 82 (2014).10.1016/j.memsci.2014.03.045CrossRefGoogle Scholar
Brenner, W., Ronson, T.K., Nitschke, J.R., J. Am. Chem. Soc. 139, 75 (2017).CrossRefGoogle Scholar
Bostrom, C.E., Gerde, P., Hanberg, A., Jernstrom, B., Johansson, C., Kyrklund, T., Rannug, A., Tornqvist, M., Victorin, K., Westerholm, R., Environ. Health Perspect. 110 (3), 451 (2002).Google Scholar
Narita, A., Wang, X.Y., Feng, X., Mullen, K., Chem. Soc. Rev. 44, 6616 (2015).CrossRefGoogle Scholar
Zhang, D., Ronson, T.K., Lavendomme, R., Nitschke, J.R., J. Am. Chem. Soc. 141, 18949 (2019).CrossRefGoogle Scholar