Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-22T20:39:52.988Z Has data issue: false hasContentIssue false

Water in clay nanopores

Published online by Cambridge University Press:  12 December 2014

Benjamin Rotenberg*
Affiliation:
CNRS and Sorbonne Universités, Université Pierre et Marie Curie, France; benjamin.rotenberg@upmc.fr
Get access

Abstract

Clay minerals are layered magnesium or aluminum silicates, which are abundant in the earth’s crust. Used since ancient times for the fabrication of bricks or terracotta, they now find application in the pharmaceutical and plastics industries. They play an essential role in oil and gas recovery, in water availability, and in preventing the dissemination of pollutants. In all of these contexts, the relevant properties of clay minerals are intimately linked to their microscopic structure, which results in a rich behavior with respect to water, solutes, and other fluids. This article provides a brief overview of the structure, dynamics, thermodynamics, and reactivity of water in clays, highlighting the role of the various types of water–mineral interfaces. Based on recent experimental and simulation studies, we discuss several features of these interfacial materials arising from their interactions with water on the molecular scale, including swelling, wetting, hydrodynamics in clay nanopores, reactivity of clay edge sites, ion exchange, and sorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergaya, F., Lagaly, G., Eds., Handbook of Clay Science (Elsevier, Oxford, UK, 2006).Google Scholar
Gaus, I., Int. J. Greenh. Gas Cont. 4, 73 (2010).Google Scholar
King, G.E., paper presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, February 6–8 2012, paper SPE 152596.Google Scholar
Delage, P., Cui, Y.J., Tang, A.M., J. Rock Mech. Geotech. Eng. 2, 111 (2010).Google Scholar
Cases, J.M., Bérend, I., François, M., Uriot, J.P., Poirier, J.E., Langmuir 8, 2730 (1992).Google Scholar
Bérend, I., Cases, J.M., François, M., Uriot, J.P., Michot, L.J., Masion, A., Thomas, F., Clays Clay Miner. 43, 324 (1995).CrossRefGoogle Scholar
Malikova, N., Cadène, A., Dubois, E., Marry, V., Durand-Vidal, S., Turq, P., Breu, J., Longeville, S., Zanotti, J.-M., J. Phys. Chem. C 111, 17603 (2007).CrossRefGoogle Scholar
Dazas, B., Lanson, B., Breu, J., Robert, J.-L., Pelletier, M., Ferrage, E., Microporous Mesoporous Mater. 181, 233 (2013).Google Scholar
Skipper, N., Refson, K., McConnell, J., Clay Miner. 24, 411 (1989).Google Scholar
Delville, A., J. Phys. Chem. 97, 9703 (1993).CrossRefGoogle Scholar
Skipper, N., Chang, F.-R., Sposito, G., Clays Clay Miner. 43, 285 (1995).Google Scholar
Boek, E.S., Coveney, P.V., Skipper, N.T., J. Am. Chem. Soc. 117, 12608 (1995).Google Scholar
Boek, E.S., Coveney, P.V., Skipper, N.T., Langmuir 11, 4629 (1995).Google Scholar
Young, D., Smith, D., J. Phys. Chem. B 104, 9163 (2000).Google Scholar
Hensen, E.J.M., Smit, B., J. Phys. Chem B 106, 12664 (2002).Google Scholar
Boek, E.S., Sprik, M., J. Phys. Chem B 107, 3251 (2003).Google Scholar
Tambach, T., Bolhuis, P., Smit, B., Angew. Chem. Int. Ed. 43, 2650 (2004).Google Scholar
Liu, X.-D., Lu, X.-C., Angew. Chem. Int. Ed. 45, 6300 (2006).Google Scholar
Whitley, H.D., Smith, D.E.J. Chem. Phys. 120, 5387 (2004).Google Scholar
Carrier, B., Vandamme, M., Pellenq, R.J.M., Van Damme, H., J. Phys. Chem. C 118, 8933 (2014).Google Scholar
Ferrage, E., Sakharov, B., Michot, L.J., Delville, A., Bauer, A., Lanson, B., Grangeon, S., Frapper, G., Jiménez-Ruiz, M., Cuello, G., J. Phys. Chem. C 115, 1867 (2011).CrossRefGoogle Scholar
Cygan, R.T., Liang, J.J., Kalinichev, A.G., J. Phys. Chem. B 108, 1255 (2004).Google Scholar
Malikova, N., Longeville, S., Zanotti, J.-M., Dubois, E., Marry, V., Turq, P., Ollivier, J., Phys. Rev. Lett. 101, 265901 (2008).Google Scholar
Michot, L.J., Ferrage, E., Jiménez-Ruiz, M., Boehm, M., Delville, A., J. Phys. Chem. C 116, 16619 (2012).Google Scholar
Marry, V., Turq, P., Cartailler, T., Levesque, D., J. Chem. Phys. 117, 3454 (2002).Google Scholar
Marry, V., Turq, P., J. Phys. Chem. B 107, 1832 (2003).Google Scholar
Malikova, N., Marry, V., Dufrêche, J.F., Turq, P., Curr. Opin. Colloid Interface Sci. 9, 124 (2004).CrossRefGoogle Scholar
Rotenberg, B., Marry, V., Dufrêche, J.-F., Malikova, N., Giffaut, E., Turq, P., C.R. Chim. 10, 1108 (2007).Google Scholar
Morrow, P.C., Yazaydin, A.Ö., Krishnan, M., Bowers, G.M., Kalinichev, A.G., Kirkpatrick, R.J., J. Phys. Chem. C 117, 5172 (2013).Google Scholar
Holmboe, M., Bourg, I.C., J. Phys. Chem. C 118, 1001 (2014).Google Scholar
Malikova, N., Dubois, E., Marry, V., Rotenberg, B., Turq, P., Z. Phys. Chem. 224, 153 (2010).Google Scholar
Marry, V., Dubois, E., Malikova, N., Durand-Vidal, S., Longeville, S., Breu, J., Environ. Sci. Technol. 45, 2850 (2011).Google Scholar
Marry, V., Rotenberg, B., Turq, P., Phys. Chem. Chem. Phys. 10, 4802 (2008).Google Scholar
Sposito, G., Prost, R., Chem. Rev. 82, 553 (1982).CrossRefGoogle Scholar
Sposito, G., Skipper, N.T., Sutton, R., Park, S.-H., Soper, A.K., Greathouse, J.A., Proc. Natl. Acad. Sci. U.S.A. 96, 3358 (1999).Google Scholar
Rotenberg, B., Marry, V., Malikova, N., Turq, P., J. Phys. Condens. Matter 22, 284114 (2010).Google Scholar
Wang, J.W., Kalinichev, A.G., Kirkpatrick, R.J., Geochim. Cosmochim. Acta 68, 3351 (2004).Google Scholar
Kirkpatrick, R.J., Kalinichev, A.G., Wang, J.W., Mineral. Mag. 69, 289 (2005).Google Scholar
Wang, J.W., Kalinichev, A.G., Kirkpatrick, R.J., Cygan, R.T., J. Phys. Chem. B 109, 15893 (2005).Google Scholar
Wang, J.W., Kalinichev, A.G., Kirkpatrick, R.J., Geochim. Cosmochim. Acta 70, 562 (2006).Google Scholar
Moyne, C., Murad, M., Transp. Porous Media 62, 333 (2006).Google Scholar
Bocquet, L., Charlaix, E., Chem. Soc. Rev. 39, 1073 (2010).Google Scholar
Barrat, J.L., Bocquet, L., Phys. Rev. Lett. 82, 4671 (1999).Google Scholar
Botan, A., Rotenberg, B., Marry, V., Turq, P., Noetinger, B., J. Phys. Chem. C 115, 16109 (2011).Google Scholar
Botan, A., Marry, V., Rotenberg, B., Turq, P., Noetinger, B., J. Phys. Chem. C 117, 978 (2013).Google Scholar
Rotenberg, B., Patel, A.J., Chandler, D., J. Am. Chem. Soc. 133, 20521 (2011).Google Scholar
Michot, L.J., Villiéras, F., François, M., Yvon, J., Le Dred, R., Cases, J.M., Langmuir 10, 3765 (1994).Google Scholar
Teppen, B.J., Miller, D.M., Soil Sci. Soc. Am. J. 70, 31 (2006).Google Scholar
Rotenberg, B., Morel, J.-P., Marry, V., Turq, P., Morel-Desrosiers, N., Geochim. Cosmochim. Acta 73, 4034 (2009).Google Scholar
Rotenberg, B., Marry, V., Vuilleumier, R., Malikova, N., Simon, C., Turq, P., Geochim. Cosmochim. Acta 71, 5089 (2007).Google Scholar
Jardat, M., Dufrêche, J.-F., Marry, V., Rotenberg, B., Turq, P., Phys. Chem. Chem. Phys. 11, 2023 (2009).Google Scholar
Bourg, I.C., Sposito, G., Bourg, A.C.M., J. Colloid Interface Sci. 312, 297 (2007).CrossRefGoogle Scholar
Hiemstra, T., Venema, P., Riemsdijk, W.H.V., J. Colloid Interface Sci. 184, 680 (1996).Google Scholar
Tournassat, C., Ferrage, E., Poinsignon, C., Charlet, L., J. Colloid Interface Sci. 273, 23 (2004).Google Scholar
Churakov, S.V., Geochim. Cosmochim. Acta 71, 1130 (2007).CrossRefGoogle Scholar
Tazi, S., Rotenberg, B., Salanne, M., Sprik, M., Sulpizi, M., Geochim. Cosmochim. Acta 94, 1 (2012).Google Scholar
Liu, X., Lu, X., Sprik, M., Cheng, J., Meijer, E.J., Wang, R., Geochim. Cosmochim. Acta 117, 180 (2013).Google Scholar
Brisard, S., Chae, R.S., Bihannic, I., Michot, L.J., Guttmann, P., Thieme, J., Schneider, G., Monteiro, P.J.M., Levitz, P., Am. Miner. 97, 480 (2012).Google Scholar
Lee, S.G., Fenter, P., Nagy, K.L., Sturchio, N.C., Langmuir 28, 8637 (2012).Google Scholar
Greathouse, J.A., Johnson, K.L., Greenwell, H.C., Minerals 4, 519 (2014).Google Scholar
Botan, A., Rotenberg, B., Marry, V., Turq, P., Noetinger, B., J. Phys. Chem. C 114, 14962 (2010).Google Scholar
Giesting, P., Guggenheim, S., Koster van Groos, A.F., Busch, A., Environ. Sci. Technol. 46, 5623 (2012).CrossRefGoogle Scholar
Hamm, L.M., Bourg, I.C., Wallace, A.F., Rotenberg, B., Rev. Mineral. Geochem. 77, 189 (2013).Google Scholar