Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-12T14:31:49.223Z Has data issue: false hasContentIssue false

Electronic charge transfer properties of COF-5 solutions and films with intercalated metal ions

Published online by Cambridge University Press:  20 January 2020

William S. Owen
Affiliation:
Naval Surface Warfare Center – Dahlgren Division, Dahlgren, VA22448, USA
Michael S. Bible
Affiliation:
Naval Surface Warfare Center – Dahlgren Division, Dahlgren, VA22448, USA
Emma F. Dohmeier
Affiliation:
Naval Surface Warfare Center – Dahlgren Division, Dahlgren, VA22448, USA
Lindsey R. Guthrie
Affiliation:
Naval Surface Warfare Center – Dahlgren Division, Dahlgren, VA22448, USA
Michael J. Parsons
Affiliation:
Naval Surface Warfare Center – Dahlgren Division, Dahlgren, VA22448, USA
Justin W. Hendrix
Affiliation:
Naval Surface Warfare Center – Dahlgren Division, Dahlgren, VA22448, USA
Joseph R. Hunt
Affiliation:
Naval Surface Warfare Center – Dahlgren Division, Dahlgren, VA22448, USA
Michael S. Lowry*
Affiliation:
Naval Surface Warfare Center – Dahlgren Division, Dahlgren, VA22448, USA
*
Address all correspondence to Michael S. Lowry at michael.s.lowry@navy.mil
Get access

Abstract

To investigate the manipulation of electromagnetic properties of two-dimensional materials, this effort characterizes charge transfer behavior of colloidal COF-5 (covalent organic framework) in the presence of various metal ions. A series of metal chloride compounds was introduced to COF-5 in solution and solid film phases and the interaction of the material with electromagnetic radiation was monitored across the visible region using electronic absorption spectroscopy. Notable changes were observed, quantified, and discussed for copper (II) chloride (CuCl2), chromium (III) chloride (CrCl3), and iron (III) chloride (FeCl3) with COF-5. Ligand-to-metal and metal-to-ligand charge transfer are explored as a possible mechanism for the observed electronic behaviors.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wang, L., Wei, Z., Mao, M., Wang, H., Li, Y., and Ma, J.: Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Mater. 16, 434454 (2019).CrossRefGoogle Scholar
2.Tang, H., Hu, Q., Zheng, M., Chi, Y., Qin, X., Pang, H., and Xu, Q.: MXene-2D layered electrode materials for energy storage. Prog. Nat. Sci. 28, 133147 (2018).CrossRefGoogle Scholar
3.Wang, Y.-H., Huang, K.-J., and Wu, X.: Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens. Bioelectron. 97, 305316 (2017).CrossRefGoogle ScholarPubMed
4.Shulaker, M.M., Hills, G., Patil, N., Wei, H., Chen, H.-Y., Wong, H.-S.P., and Mitra, S.: Carbon nanotube computer. Nature 501, 526530 (2013).CrossRefGoogle ScholarPubMed
5.Sankaran, S., Deshmukh, K., Ahamed, M.B., and Pasha, S.K.: Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Composites Part A 114, 4971 (2018).CrossRefGoogle Scholar
6.Song, Y., He, L., Zhang, X., Liu, F., Tian, N., Tang, Y., and Kong, J.: Highly efficient electromagnetic wave absorbing metal-free and carbon-rich ceramics derived from hyperbranched polycarbosilazanes. J. Phys. Chem. C 121, 2477424785 (2017).CrossRefGoogle Scholar
7.Cote, A.P., Benin, A.I., Ockwig, N.I., O'Keeffe, M., Matzger, A.J., and Yaghi, O.M.: Porous, crystalline, covalent organic frameworks. Science 310, 11661170 (2005).CrossRefGoogle ScholarPubMed
8.Wan, S., Guo, J., Kim, J., Ihee, H., and Jiang, D.: A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypropylene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 54395442 (2009).CrossRefGoogle Scholar
9.Wang, R.-L., Li, D.-P., Wang, L.-J., Zhang, X., Zhou, Z.-Y., Mu, J.-L., and Su, Z.-M.S.: The preparation of new covalent organic framework embedded with silver nanoparticles and its applications in degradation of organic pollutants from waste water. Dalton Trans. 48, 10511059 (2019).CrossRefGoogle ScholarPubMed
10.Ding, X., Guo, J., Feng, X., Honsho, Y., Guo, J., Seki, S., Maitarad, P., Saeki, A., Nagase, S., and Jiang, D.: Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. 50, 12891293 (2010).CrossRefGoogle ScholarPubMed
11.Spitler, E.L. and Dichtel, W.R.: Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2, 672677 (2010).CrossRefGoogle ScholarPubMed
12.Yang, H., Zhang, S., Han, L., Zhang, Z., Xue, Z., Gao, J., Li, Y., Huang, C., Yi, Y., Liu, H., and Li, Y.: High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 8, 53665375 (2016).CrossRefGoogle ScholarPubMed
13.Ascherl, L., Evans, E.W., Hennemann, M., Di Nuzzo, D., Hufnagel, A.G., Beetz, M., Friend, R.H., Clark, T., Bein, T., and Auras, F.: Solvatochromic covalent organic frameworks. Nat. Commun. 9, 3802 (2018).CrossRefGoogle ScholarPubMed
14.Dalapati, S., Jin, E., Addicoat, M., Heine, T., and Jiang, D.: Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 138, 57975800 (2016).CrossRefGoogle ScholarPubMed
15.Dresselhaus, M.S. and Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 51, 1186 (2002).CrossRefGoogle Scholar
16.Xu, J., Dou, Y., Wei, Z., Ma, J., Deng, Y., Li, Y., Liu, H., and Dou, S.: Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4, 1700146, 114 (2017).CrossRefGoogle Scholar
17.Smith, B.J., Parent, L.R., Overholts, A.C., Beaucage, P.A., Bisbey, R.P., Chavez, A.D., Hwang, N., Park, C., Evans, A.M., Gianneschi, N.C., and Dichtel, W.R.: Colloidal covalent organic frameworks. ACS Cent. Sci. 3, 5865 (2017).CrossRefGoogle ScholarPubMed
18.Lukose, B., Kuc, A., Frenzel, J., and Heine, T.: On the reticular construction concept of covalent organic frameworks. Beilstein J. Nanotechnol. 1, 6070 (2010).CrossRefGoogle ScholarPubMed
19.Zhou, Y., Wang, Z., Yang, P., Zu, X., and Gao, F.: Electronic and optical properties of two-dimensional covalent organic frameworks. J. Mater. Chem. 22, 1696416970 (2012).CrossRefGoogle Scholar
20.Xu, Z.: Mechanics of metal-catecholate complexes: the roles of coordination state and metal types. Sci. Rep. 3, 2914 (2013).CrossRefGoogle ScholarPubMed
21.Shriver, D., and Atkins, P.: Inorganic Chemistry. 3rd ed. (W. H. Freeman and Company, New York, NY, 1999).Google Scholar
22.Manuta, D.M., and Lees, A.J.: Solvatochromism of the metal to ligand charge-transfer transitions of zerovalent tungsten carbonyl complexes. Inorg. Chem. 25, 32123218 (1986).CrossRefGoogle Scholar
23.Carlotti, B., Flamini, R., Kikas, I., Mazzucato, U., and Spalletti, A.: Intramolecular charge transfer, solvatochromism and hyperpolarizability of compounds bearing ethenylene or ethynylene bridges. Chem. Phys. 407, 919 (2012).CrossRefGoogle Scholar
24.OpenStax College: Chemistry (OpenStax, Houston, TX, 2015).Google Scholar
25.Utterback, J.K., Wilker, M.B., Mulder, D.W., King, P.W., Eaves, J.D., and Dukovic, G.: Quantum efficiency of charge transfer competing against nonexponential processes: the case of electron transfer from CdS nanorods to hydrogenase. J. Phys. Chem. 123, 886896 (2019).Google Scholar
Supplementary material: File

Owen et al. supplementary material

Owen et al. supplementary material

Download Owen et al. supplementary material(File)
File 4.4 MB