Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-04T09:27:04.479Z Has data issue: false hasContentIssue false

Poly(3,4-ethylenedioxythiophene):sulfonated poly(diphenylacetylene) complex as a hole injection material in organic light-emitting diodes

Published online by Cambridge University Press:  07 August 2017

Jung Jae Kim
Affiliation:
Major in Polymer Science & Engineering, School of Applied Chemical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
Jin Chul Yang
Affiliation:
Major in Polymer Science & Engineering, School of Applied Chemical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
Keunbyung Yoon
Affiliation:
Major in Polymer Science & Engineering, School of Applied Chemical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
Giseop Kwak*
Affiliation:
Major in Polymer Science & Engineering, School of Applied Chemical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
Jin Young Park*
Affiliation:
Major in Polymer Science & Engineering, School of Applied Chemical Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
*
Address all correspondence to Giseop Kwak, Jin Young Park at gkwak@knu.ac.kr, jinpark@knu.ac.kr
Address all correspondence to Giseop Kwak, Jin Young Park at gkwak@knu.ac.kr, jinpark@knu.ac.kr
Get access

Abstract

New ionic conjugated polyelectrolyte complex films based on poly(3,4-ethylenedioxythiophene):sulfonated poly(diphenylacetylene) (PEDOT:SPDPA) are electrochemically formed on indium thin oxide substrates using a potentiostatic method, and their physical properties are evaluated using various analytical tools. Depending on a constant applied voltage, the surface morphological features and electrochemically doped states are different due to the conformational structure related to the oxidation state in the PEDOT growth process and concomitant SPDPA doping state in the films. For the purpose of use as a hole injection layer in organic light-emitting diodes, a well-known configuration (ITP/PEDOT:SPDPA/TPD/Alq3/LiF/Al) is adopted to investigate the optoelectronic properties.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

1.Sun, K., Zhang, S., Li, P., Xia, Y., Zhang, X., Du, D., Isikgor, F.H., and Ouyang, J.: Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci.: Mater. Electron. 26, 44384462 (2015).Google Scholar
2.Bejbouj, H., Vignau, L., Miane, J.L., Olinga, T., Wantz, G., Mouhsen, A., Oualim, E.M., and Harmouchi, M.: Influence of the nature of polyaniline-based hole-injecting layer on polymer light emitting diode performances. Mat. Sci. Eng. B: Solid 166, 185189 (2010).Google Scholar
3.Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., and Reynolds, J.R.: Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 12, 481494 (2000).Google Scholar
4.Jiang, H., Taranekar, P., Reynolds, J.R., and Schanze, K.S.: Conjugated polyelectrolytes: synthesis, photophysics, and applications. Angew. Chem. Int. Ed. 48, 43004316 (2009).Google Scholar
5.Yan, J., Sun, C., Tan, F., Hu, X., Chen, P., Qu, S., Zhou, S., and Xu, J.: Electropolymerized poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film on ITO glass and its application in photovoltaic device. Sol. Energy Mater. Sol. Cells 94, 390394 (2010).Google Scholar
6.Choulis, S.A., Choong, V.E., Patwardhan, A., Mathai, M.K., and So, F.: Interface modification to improve hole-injection properties in organic electronic devices. Adv. Funct. Mater. 16, 10751080 (2006).Google Scholar
7.Kim, N., Kee, S., Lee, S.H., Lee, B.H., Kahng, Y.H., Jo, Y.R., Kim, B.J., and Lee, K.: Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26, 22682272 (2014).Google Scholar
8.de Kok, M.M., Buechel, M., Vulto, S.I.E., van de Weijer, P., Meulenkamp, E.A., de Winter, S.H.P.M., Mank, A.J.G., Vorstenbosch, H.J.M., Weijtens, C.H.I., and van Elsbergen, V.: Modification of PEDOT:PSS as hole injection layer in polymer LEDs. Phys. Status Solidi (a) 201, 13421359 (2004).Google Scholar
9.Walzer, K., Maennig, B., Pfeiffer, M., and Leo, K.: Highly Efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 12331271 (2007).Google Scholar
10.Yu, J.C., Jang, J.I., Lee, B.R., Lee, G.W., Han, J.T., and Song, M.H.: Highly efficient polymer-based optoelectronic devices using PEDOT:PSS and a GO composite layer as a hole transport layer. ACS Appl. Mater. Interfaces 6, 20672073 (2014).Google Scholar
11.Riedel, B., Shen, Y., Hauss, J., Aichholz, M., Tang, X., Lemmer, U., and Gerken, M.: Tailored highly transparent composite hole-injection layer consisting of Pedot:PSS and SiO2 nanoparticles for efficient polymer light-emitting diodes. Adv. Mater. 23, 740745 (2011).Google Scholar
12.Kim, T.Y., Suh, M., Kwon, S.J., Lee, T.H., Kim, J.E., Lee, Y.J., Kim, J.H., Hong, M.P., and Suh, K.S.: Poly(3,4-ethylenedioxythiophene) derived from poly(ionic liquid) for the use as hole-injecting material in organic light-emitting diodes. Macromol. Rapid Commun. 30, 14771482 (2009).Google Scholar
13.Cutler, C.A., Bouguettaya, M., Kang, T.S., and Reynolds, J.R.: Alkoxysulfonate-functionalized PEDOT polyelectrolyte multilayer films: electrochromic and hole transport materials. Macromolecules 38, 30683074 (2005).Google Scholar
14.Hofmann, A.I., Smaal, W.T.T., Mumtaz, M., Katsigiannopoulos, D., Brochon, C., Schütze, F., Hild, O.R., Cloutet, E., and Hadziioannou, G.: An alternative anionic polyelectrolyte for aqueous PEDOT dispersions: toward printable transparent electrodes. Angew. Chem. Int. Ed. 54, 85068510 (2015).Google Scholar
15.Lee, W.E., Jin, Y.J., Kim, S.I., Kwak, G., Kim, J.H., Sakaguchi, T., and Lee, C.L.: Fluorescence turn-on response of a conjugated polyelectrolyte with intramolecular stack structure to biomacromolecules. Chem. Commun. 49, 98579859 (2013).Google Scholar
16.Lee, W.E., Jin, Y.J., Kim, B.S.I., Kwak, G., Sakaguchi, T., Lee, H.H., Kim, J.H., Park, J.S., Myoung, N., and Lee, C.L.: In-situ electrostatic self-assembly of conjugated polyelectrolytes in a film. Adv Mater Interfaces Adv. Mater. Interfaces 1, 1400360 (2014).Google Scholar
17.Janáky, C., Bencsik, G., Rácz, Á., and Visy, C.: Electrochemical grafting of poly(3,4-ethylenedioxythiophene) into a titanium dioxide nanotube host network. Langmuir 26, 1369713702 (2010).Google Scholar
18.Koyama, T., Matsuno, T., Yokoyama, Y., and Kishida, H.: Photoluminescence of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in the visible region. J. Mater. Chem. C 3, 83078310 (2015).Google Scholar
19.Gangopadhyay, R., Das, B., and Molla, M.R.: How does PEDOT combine with PSS? Insights from structural studies. RSC Adv. 4, 4391243920 (2014).Google Scholar
20.Sakai, N., Prasad, G.K., Ebina, Y., Takada, K., and Sasaki, T.: Layer-by-layer assembled TiO2 nanoparticle/PEDOT-PSS composite films for switching of electric conductivity in response to ultraviolet and visible light. Chem. Mater. 18, 35963598 (2006).Google Scholar
21.Crispin, X., Jakobsson, F.L.E., Crispin, A., Grim, P.C.M., Andersson, P., Volodin, A., van Haesendonck, C., Van der Auweraer, M., Salaneck, W.R., and Berggren, M.: The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)−poly(styrenesulfonate) (PEDOT−PSS) plastic electrodes. Chem. Mater. 18, 43544360 (2006).Google Scholar
22.Kim, Y.H., Sachse, C., Machala, M.L., May, C., Müller-Meskamp, L., and Leo, K.: Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 21, 10761081 (2011).Google Scholar
23.Culebras, M., Gómez, C.M., and Cantarero, A.: Thermoelectric measurements of PEDOT:PSS/expanded graphite composites. J. Mater. Sci. 48, 28552860 (2013).Google Scholar
24.Teraguchi, M., and Masuda, T.: Polymerization of diphenylacetylenes having very bulky silyl groups and polymer properties. J. Polym. Sci. A: Polym. Chem. 36, 27212725 (1998).Google Scholar
25.Gritzner, G., and Kuta, J.: Recommendations on reporting electrode potentials in nonaqueous solvents. Pure Appl. Chem. 56, 461466 (1984).Google Scholar
26.Janssen, R.A.J., and Nelson, J.: Factors limiting device efficiency in organic photovoltaics. Adv. Mater. 25, 18471858 (2013).Google Scholar
27.Ahonen, H.J., Lukkari, J., and Kankare, J.: n- and p-Doped poly(3,4-ethylenedioxythiophene): two electronically conducting states of the polymer. Macromolecules 33, 6787–6679 (2000).Google Scholar
28.Mu, H., Li, W., Jones, R., Steckl, A., and Klotzkin, D.: A comparative study of electrode effects on the electrical and luminescent characteristics of Alq3/TPD OLED: improvements due to conductive polymer (PEDOT) anode. J. Lumin. 126, 225229 (2007).Google Scholar
29.Huang, J., Miller, P.F., Wilson, J.S., de Mello, A.J., de Mello, J.C., and Bradley, D.D.C.: Investigation of the effects of doping and post-deposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films. Adv. Funct. Mater. 15, 290296 (2005).Google Scholar
30.Friedel, B., Keivanidis, P.E., Brenner, T.J.K., Abrusci, A., McNeill, C.R., Friend, R.H., and Greenham, N.C.: Effects of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors. Macromolecules 42, 67416747 (2009).Google Scholar
Supplementary material: File

Kim supplementary material

Figures S1-S5

Download Kim supplementary material(File)
File 2.7 MB