Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-19T22:36:18.630Z Has data issue: false hasContentIssue false

Transmission electron microscopy with atomic resolution under atmospheric pressures

Published online by Cambridge University Press:  21 November 2017

Sheng Dai
Affiliation:
Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California 92697, USA
Wenpei Gao
Affiliation:
Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California 92697, USA
Shuyi Zhang
Affiliation:
Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California 92697, USA Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
George W. Graham
Affiliation:
Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California 92697, USA Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
Xiaoqing Pan*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California 92697, USA Department of Physics and Astronomy, University of California Irvine, Irvine, California 92697, USA
*
Address all correspondence to Xiaoqing Pan at xiaoqing.pan@uci.edu
Get access

Abstract

Significant developments in micro-electrical-mechanical systems-based devices for use in transmission electron microscopy (TEM) sample holders have recently led to the commercialization of windowed gas cells that now enable the atomic-resolution visualization of phenomena occurring during gas–solid interactions at atmospheric pressure. In situ TEM study under atmospheric pressures provides unique information that is beneficial to correlating the structure–properties relationship of nanomaterials, particularly under real gaseous environments. We here provide a brief introduction of the advanced instrumentation of windowed gas cells and review recent progress of in situ atomic-resolution TEM study under atmospheric pressures, including some application examples of oxidation and reduction processes, dynamic growth of nanomaterials, catalytic reactions, and “operando” TEM.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Knoll, M. and Ruska, E.: Das elektronenmikroskop. Z. Phys. 78, 318 (1932).CrossRefGoogle Scholar
2. Scherzer, O.: The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20 (1949).CrossRefGoogle Scholar
3. Crewe, A.V., Wall, J., and Langmore, J.: Visibility of single atoms. Science 12, 1338 (1970).CrossRefGoogle Scholar
4. Pennycook, S.J. and Boatner, L.A.: Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336, 565 (1988).CrossRefGoogle Scholar
5. Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K., and Timp, G.: The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758 (1999).CrossRefGoogle Scholar
6. Williams, D.B. and Carter, C.B.: The transmission electron microscope (Springer, Berlin, 1996).CrossRefGoogle Scholar
7. Haider, M., Uhlemann, S., Schwan, E., Kabius, B., and Urban, K.: Electron microscopy image enhanced. Nature 392, 768 (1998).CrossRefGoogle Scholar
8. Batson, P.E., Dellby, N., and Krivanek, O.L.: Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617 (2002).CrossRefGoogle ScholarPubMed
9. Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H. Jr., and Pennycook, S.J.: Direct sub-angstrom imaging of a crystal lattice. Science 17, 1741 (2004).CrossRefGoogle Scholar
10. Urban, K.W.: Studying atomic structures by aberration-corrected transmission electron microscopy. Science 25, 506 (2008).CrossRefGoogle Scholar
11. Haque, M.A. and Saif, M.T.A.: Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM. Sens. Actuators A 239, 97 (2002).Google Scholar
12. Lu, S., Dikin, D.A., Zhang, S., Fisher, F.T., Lee, J., and Ruoff, Rodney S.: Realization of nanoscale resolution with a micromachined thermally actuated testing stage. Rev. Sci. Instrum. 75, 2154 (2004).CrossRefGoogle Scholar
13. Zhu, Y., Moldovan, N., and Espinosa, H.D.: A microelectromechanical load sensor for in situ electron and x-ray microscopy tensile testing of nanostructures. Appl. Phys. Lett. 86, 013506 (2005).CrossRefGoogle Scholar
14. Haque, M.A., Espinosa, H.D., and Lee, H.J.: MEMS for in situ testing—Handling, actuation, loading, and displacement measurements. MRS Bull. 35, 375 (2010).CrossRefGoogle Scholar
15. Allard, L.F., Bigelow, W.C., Jose-Yacaman, M., Nackashi, D.P., Damiano, J., and Mick, S.E.: A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc. Res. Tech. 72, 208 (2009).CrossRefGoogle ScholarPubMed
16. Creemer, J.F., Helveg, S., Kooyman, P.J., Molenbroek, A.M., Zandbergen, H.W., and Sarro, P.M.: A MEMS reactor for atomic-scale microscopy of nanomaterials under industrially relevant conditions. J. Micro Syst. 19, 254 (2010).CrossRefGoogle Scholar
17. Allard, L.F., Overbury, S.H., Bigelow, W.C., Katz, M.B., Nackashi, D.P., and Damiano, J.: Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc. Microanal. 18, 656 (2012).CrossRefGoogle ScholarPubMed
18. Wu, F. and Yao, N.: Advances in windowed gas cells for in-situ TEM studies. Nano Energy 13, 735 (2015).CrossRefGoogle Scholar
19. Boston, R., Schnepp, Z., Nemoto, Y., Sakka, Y., and Hall, S.R.: In situ TEM observation of a microcrucible mechanism of nanowire growth. Science 344, 623 (2014).CrossRefGoogle ScholarPubMed
20. Poncharal, P., Wang, Z.L., Ugarte, D., and De Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999).CrossRefGoogle ScholarPubMed
21. Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H., Qi, L., Kushima, A., and Li, J.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010).CrossRefGoogle ScholarPubMed
22. Nelson, C.T., Gao, P., Jokisaari, J.R., Heikes, C., Adamo, C., Melville, A., Baek, S.H., Folkman, C.M., Winchester, B., Gu, Y., Liu, Y., Zhang, K., Wang, E., Li, J., Chen, L.Q., Eom, C.B., Schlom, D.G., and Pan, X.: Domain dynamics during ferroelectric switching. Science 334, 968 (2011).CrossRefGoogle ScholarPubMed
23. Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., and Topsøe, H.: Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053 (2002).CrossRefGoogle ScholarPubMed
24. Yoshida, H., Kuwauchi, Y., Jinschek, J.R., Sun, K., Tanaka, S., Kohyama, M., Shimada, S., Haruta, M., and Takeda, S.: Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317 (2012).CrossRefGoogle ScholarPubMed
25. Zhang, L., Miller, B.K., and Crozier, P.A.: Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett. 13, 679 (2013).CrossRefGoogle ScholarPubMed
26. Zheng, H., Smith, R.K., Jun, Y., Kisielowski, C., Dahmen, U., and Alivisatos, A.P.: Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309 (2009).CrossRefGoogle ScholarPubMed
27. Zeng, Z., Zhang, X., Bustillo, K., Niu, K., Gammer, C., Xu, J., and Zheng, H.: In situ study of lithiation and delithiation of MoS2 nanosheets using electrochemical liquid cell transmission electron microscopy. Nano Lett. 15, 5214 (2015).CrossRefGoogle ScholarPubMed
28. Wu, F. and Yao, N.: Advances in sealed liquid cells for in-situ TEM electrochemical investigation of lithium-ion battery. Nano Energy 11, 196 (2015).CrossRefGoogle Scholar
29. Wang, Y., Chen, X., Cao, H., Deng, C., Cao, X., and Wang, P.: A structural study of Escherichia coli cells using an in situ liquid chamber TEM technology. J. Anal. Methods Chem. 2015, 829302 (2015).CrossRefGoogle Scholar
30. Mehraeen, S., McKeown, J.T., Deshmukh, P.V., Evans, J.E., Abellan, P., Xu, P., Reed, B.W., Taheri, M.L., Fischione, P.E., and Browning, N.D.: A (S)TEM gas cell holder with localized laser heating for in situ experiments. Microsc. Microanal. 19, 470 (2013).CrossRefGoogle Scholar
31. Marton, L.: La microscopie electronique des objets biologiques. Bull. Acad. R. Med. Belg. 21, 553 (1935).Google Scholar
32. Ruska, E.: Beitrag zur übermikroskopischen Abbildung bei höheren Drucken. Kolloid-Zeitschrift. 100, 212 (1942).CrossRefGoogle Scholar
33. Casu, A., Sogne, E., Genovese, A., Di Benedetto, C., Mozo, S.L., Zuddas, E., Pagliari, F., and Falqui, A.: The new youth of the in situ transmission electron microscopy. (InTech, Rijeka, Croatia. DOI: 10.5772/63269, 2016).CrossRefGoogle Scholar
34. Hansen, T.W. and Wagner, J.B.: Environmental transmission electron microscopy in an aberration-corrected environment. Microsc. Microanal. 18, 684 (2012).CrossRefGoogle Scholar
35. Sharma, R.: Design and applications of environmental cell transmission electron microscope for in situ observations of gas-solid reactions. Microsc. Microanal. 7, 494 (2001).CrossRefGoogle Scholar
36. Jinschek, J.R. and Helveg, S.: Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 1156 (2012).CrossRefGoogle Scholar
37. Jinschek, J.R.: Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chem. Commun. 50, 2696 (2014).CrossRefGoogle ScholarPubMed
38. Xin, H.L., Niu, K., Alsem, D.H., and Zheng, H.: In situ TEM study of catalytic nanoparticle reactions in atmospheric pressure gas environment. Microsc. Microanal. 19, 1558 (2013).CrossRefGoogle ScholarPubMed
39. Zhang, X.F. and Kamino, T.: Imaging gas–solid interactions in an atomic resolution environmental TEM. Micros Today 14, 16 (2006).CrossRefGoogle Scholar
40. Heide, H.G.: Electron microscopic observation of specimens under controlled gas pressure. J. Cell Biol. 13, 147 (1962).CrossRefGoogle ScholarPubMed
41. Tabata, O. and Tsuchiya, T.: Reliability of MEMS (Wiley-VCH, Weinheim, 2007).CrossRefGoogle Scholar
42. Doll, T., Hochberg, M., Barsic, D., and Scherer, A.: Micro-machined electron transparent alumina vacuum windows. Sens. Actuators A 87, 52 (2000).CrossRefGoogle Scholar
43. Yaguchi, T., Suzuki, M., Watabe, A., Nagakubo, Y., Ueda, K., and Kamino, T.: Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J. Electron Microsc. 60, 217 (2011).CrossRefGoogle ScholarPubMed
44. de Jonge, N., Bigelow, W.C., and Veith, G.M.: Atmospheric pressure scanning transmission electron microscopy. Nano Lett. 10, 1028 (2010).CrossRefGoogle ScholarPubMed
45. Hansen, T.W. and Wagner, J.B.: Catalysts under controlled atmospheres in the transmission electron microscope. ACS Catal. 4, 1673 (2014).CrossRefGoogle Scholar
46. Kawasaki, T., Ueda, K., Ichihashi, M., and Tanji, T.: Improvement of windowed type environmental-cell transmission electron microscope for in situ observation of gas-solid interactions. Rev. Sci. Instrum. 80, 113701 (2009).CrossRefGoogle ScholarPubMed
47. Alan, T., Yokosawa, T., Gaspar, J., Pandraud, G., Paul, O., Creemer, F., Sarro, P.M., and Zandbergen, H.W.: Micro-fabricated channel with ultra-thin yet ultra-strong windows enables electron microscopy under 4-bar pressure. Appl. Phys. Lett. 100, 4 (2012).CrossRefGoogle Scholar
48. Ghassemi, H., Harlow, W., Mashtalir, O., Beidaghi, M., Lukatskaya, M.R., Gogotsi, Y., and Taheri, M.L.: In situ environmental transmission electron microscopy study of oxidation of two-dimensional Ti3C2 and formation of carbon-supported TiO2 . J. Mater. Chem. A 2, 14339 (2014).CrossRefGoogle Scholar
49. Shen, X., Dai, S., Zhang, C., Zhang, S., Sharkey, S.M., Graham, G.W., Pan, X., and Peng, Z.: In situ atomic-scale observation of the two-dimensional Co(OH)2 transition at atmospheric pressure. Chem. Mater. 29, 4572 (2017).CrossRefGoogle Scholar
50. Wu, Y.A., Li, L., Li, Z., Kinaci, A., Chan, M.K.Y., Sun, Y., Guest, J.R., McNulty, I., Rajh, T., and Liu, Y.: Visualizing redox dynamics of a single Ag/AgCl heterogeneous nanocatalyst at atomic resolution. ACS Nano 10, 3738 (2016).CrossRefGoogle ScholarPubMed
51. Dai, S., Hou, Y., Onoue, M., Zhang, S., Gao, W., Yan, X., Graham, G.W., Wu, R., and Pan, X.: Revealing surface elemental composition and dynamic processes involved in facet-dependent oxidation of Pt3Co nanoparticles via in situ transmission electron microscopy. Nano Lett. 17, 4683 (2017).CrossRefGoogle ScholarPubMed
52. Granqvist, C., Kish, L., and Marlow, W.: Gas phase nanoparticle synthesis (Springer, Berlin, Germany, 2004).CrossRefGoogle Scholar
53. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., and Yan, H.: One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
54. Rao, C.N.R., Müller, A., and Cheetham, A.K.: The chemistry of nanomaterials: synthesis, properties and applications (Wiley-VCH, Weinheim, Germany, 2004).CrossRefGoogle Scholar
55. Dai, S., You, Y., Zhang, S., Cai, W., Xu, M., Xie, L., Wu, R., Graham, G.W., and Pan, X.: In-situ atomic-scale observation of oxygen-driven core-shell formation in Pt3Co nanoparticles. Nat. Commun. 8, 204 (2017).CrossRefGoogle Scholar
56. Aguiar, J.A., Wozny, S., Holesinger, T.G., Aoki, T., Patel, M.K., Yang, M., Berry, J.J., Al-Jassim, M., Zhou, W., and Zhu, K.: In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy Environ. Sci. 9, 2372 (2016).CrossRefGoogle Scholar
57. Avanesian, T., Dai, S., Kale, M.J., Graham, G.W., Pan, X., and Christopher, P.: Quantitative and atomic-scale view of CO-induced Pt nanoparticle surface reconstruction at saturation coverage via DFT calculations coupled with in situ TEM and IR. J. Am. Chem. Soc. 139, 4551 (2017).CrossRefGoogle ScholarPubMed
58. Bourane, A., and Bianchi, D.: Heats of adsorption of the linear CO species on Pt/Al2O3 using infrared spectroscopy: impact of the Pt dispersion. J. Catal. 218, 447 (2003).CrossRefGoogle Scholar
59. Jiang, Y., Li, H., Wu, Z., Ye, W., Zhang, H., Wang, Y., Sun, C., and Zhang, Z.: In Situ observation of hydrogen-induced surface faceting for palladium-copper nanocrystals at atmospheric pressure. Angew. Chem. 128, 12615 (2016).CrossRefGoogle Scholar
60. Onn, T.M., Zhang, S., Arroyo-Ramirez, L., Chung, Y., Graham, G.W., Pan, X., and Gorte, R.J.: Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2 . ACS Catal. 5, 5696 (2015).CrossRefGoogle Scholar
61. Zhang, S., Cargnello, M., Cai, W., Murray, C.B., Graham, G.W., and Pan, X.: Revealing particle growth mechanisms by combining high-surface-area catalysts made with monodisperse particles and electron microscopy conducted at atmospheric pressure. J. Catal. 337, 240 (2016).CrossRefGoogle Scholar
62. Dai, S., Zhang, S., Katz, M.B., Graham, G.W., and Pan, X.: In situ observation of Rh-CaTiO3 catalysts during reduction and oxidation treatments by transmission electron microscopy. ACS Catal. 7, 1579 (2017).CrossRefGoogle Scholar
63. Matsubu, J.C., Zhang, S., DeRita, L., Marinkovic, N.S., Chen, J.G., Graham, G.W., Pan, X., and Christopher, P.: Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120 (2017).CrossRefGoogle ScholarPubMed
64. Zhang, S., Plessow, P.N., Willis, J.J., Dai, S., Xu, M., Graham, G.W., Cargnello, M., Abild-Pedersen, F., and Pan, X.: Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano Lett. 16, 4528 (2016).CrossRefGoogle ScholarPubMed
65. Tauster, S., Fung, S., and Garten, R.J.: Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100, 170 (1978).CrossRefGoogle Scholar
66. Zhang, S., Chen, C., Cargnello, M., Fornasiero, P., Gorte, R.J., Graham, G.W., and Pan, X.: Dynamic structural evolution of supported palladium-ceria core-shell catalysts revealed by in situ electron microscopy. Nat. Commun. 6, 7778 (2015).CrossRefGoogle ScholarPubMed
67. Bañares, M.A. and Wachs, I.E.: Molecular structures of supported metal oxide catalysts under different environments. J. Raman Spectrosc. 33, 359 (2002).CrossRefGoogle Scholar
68. Bañares, M.A.: Operando methodology: combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 100, 71 (2005).CrossRefGoogle Scholar
69. Giorgio, S., Cabie, M., and Henry, C.R.: Dynamic observations of Au catalysts by environmental electron microscopy. Gold Bull. 41, 167 (2008).CrossRefGoogle Scholar
70. Vendelbo, S.B., Elkjær, C.F., Falsig, H., Puspitasari, I., Dona, P., Mele, L., Morana, B., Nelissen, B.J., van Rijn, R., Creemer, J.F., Kooyman, P.J., and Helveg, S.: Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat. Mater. 13, 884 (2014).CrossRefGoogle ScholarPubMed
71. Li, Y., Zakharov, D., Zhao, S., Tappero, R., Jung, U., Elsen, A., Baumann, Ph, Nuzzo, R.G., Stach, E.A., and Frenkel, A.I.: Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes. Nat. Commun. 6, 7583 (2015).CrossRefGoogle ScholarPubMed
72. Crozier, P.A. and Hansen, T.W.: In situ and operando transmission electron microscopy of catalytic materials. MRS Bull. 40, 38 (2015).CrossRefGoogle Scholar
73. Taheri, M.L., Stach, E.A., Arslan, I., Crozier, P.A., Kabius, B.C., LaGrange, T., Minor, A.M., Takeda, S., Tanase, M., Wagner, J.B., and Sharma, R.: Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy 170, 86 (2016).CrossRefGoogle ScholarPubMed
74. Wu, J., Shan, H., Chen, W., Gu, X., Tao, P., Song, C., Shang, W., and Deng, T.: In situ environmental TEM in imaging gas and liquid phase chemical reactions for materials research. Adv. Mater. 28, 9686 (2016).CrossRefGoogle ScholarPubMed
75. Faruqi, A.R. and McMullan, G.: Electronic detectors for electron microscopy. Q. Rev. Biophys. 44, 357 (2011).CrossRefGoogle ScholarPubMed
76. Liao, H.G., Zherebetskyy, D., Xin, H., Czarnik, C., Ercius, P., Elmlund, H., Pan, M., Wang, L.W., and Zheng, H.: Facet development during platinum nanocube growth. Science 345, 916 (2014).CrossRefGoogle ScholarPubMed
77. Hilbert, S.A., Uiterwaal, C., Barwick, B., Batelaan, H., and Zewail, A.H.: Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. USA 106, 10558 (2009).CrossRefGoogle ScholarPubMed
78. Flannigan, D.J., Barwick, B., and Zewail, A.H.: Biological imaging with 4D ultrafast electron microscopy. Proc. Natl. Acad. Sci. USA 107, 9933 (2010).CrossRefGoogle ScholarPubMed
79. Flannigan, D.J. and Zewail, A.H.: 4D electron microscopy: principles and applications. Acc. Chem. Res. 45, 1828 (2012).CrossRefGoogle Scholar
80. Plemmons, D.A., Suri, P.K., and Flannigan, D.J.: Probing structural and electronic dynamics with ultrafast electron microscopy. Chem. Mater. 27, 3178 (2015).CrossRefGoogle Scholar
81. Mansour, O., Kadoun, A., Khouchaf, L., and Mathieu, C.: Monte Carlo simulation of the electron beam scattering under water vapor environment at low energy. Vacuum 87, 11 (2013).CrossRefGoogle Scholar
82. Hansen, T.W. and Wagner, J.B.: Controlled atmosphere transmission electron microscopy (Springer, Heidelberg, 2016).CrossRefGoogle Scholar
83. Wu, J., Helveg, S., Ullmann, S., Peng, Z., and Bell, A.T.: Growth of encapsulating carbon on supported Pt nanoparticles studied by in situ TEM. J. Catal. 338, 295 (2016).CrossRefGoogle Scholar
84. McMullan, G., Faruqi, A.R., Clare, D., and Henderson, R.: Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156 (2014).CrossRefGoogle Scholar
85. Stevens, A., Yang, H., Carin, L., Arslan, I., and Browning, N.D.: The potential for Bayesian compressive sensing to significantly reduce electron dose in high-resolution STEM images. Microscopy 63, 41 (2014).CrossRefGoogle ScholarPubMed
86. Stevens, A., Kovarik, L., Abellan, P., Yuan, X., Carin, L., and Browning, N.D.: Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. Adv. Struct. Chem. Imaging 1, 10 (2015).CrossRefGoogle Scholar
87. Browning, N.D., Stevens, A., Kovarik, L., Liyu, A., Mehdi, B.L., Stanfill, B., Reehl, S., and Bramer, L.: Implementing sub-sampling methods for low-dose (scanning) transmission electron microscopy (S/TEM). Microsc. Microanal. 23, 82 (2017).CrossRefGoogle Scholar
88. Xie, D.G., Wang, Z.J., Sun, J., Li, J., Ma, E., and Shan, Z.W.: In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 14, 899 (2015).CrossRefGoogle ScholarPubMed
89. Luo, L., Liu, B., Song, S., Xu, W., Zhang, J.G., and Wang, C.: Revealing the reaction mechanisms of Li-O2 batteries using environmental transmission electron microscopy. Nat. Nanotechnol. 12, 535 (2017).CrossRefGoogle Scholar
90. Dai, S., Zhao, J., He, M., Wang, X., Wan, J., Shan, Z., and Zhu, J.: Elastic properties of GaN nanowires: revealing the influence of planar defects on Young's modulus at nanoscale. Nano Lett. 15, 8 (2015).CrossRefGoogle ScholarPubMed
91. Ma, J.W., Lee, W.J., Bae, J.M., Jeong, K.S., Oh, S.H., Kim, J.H., Kim, S.H., Seo, J.H., Ahn, J.P., Kim, H., and Cho, M.H.: Carrier mobility enhancement of tensile strained Si and SiGe nanowires via surface defect engineering. Nano Lett. 15, 7204 (2015).CrossRefGoogle ScholarPubMed
92. Unocic, R.R., Sacci, R.L., Brown, G.M., Veith, G.M., Dudney, N.J., More, K.L., Walden, F.S., Gardiner, D.S., Damiano, J., and Nackashi, D.P.: Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal. 20, 452 (2014).CrossRefGoogle ScholarPubMed