Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-06T21:53:01.077Z Has data issue: false hasContentIssue false

Tuning the photocurrent generations from photosystem I assembled in tailored biotic–abiotic interfaces

Published online by Cambridge University Press:  06 May 2018

Hanieh Niroomand
Affiliation:
Department of Chemical and Biomolecular Engineering; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA
Ravi Pamu
Affiliation:
Department of Mechanical, Aerospace, and Biomedical Engineering; Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3), University of Tennessee, Knoxville, TN 37996, USA
Dibyendu Mukherjee*
Affiliation:
Department of Mechanical, Aerospace, and Biomedical Engineering; Department of Chemical and Biomolecular Engineering; Nano-BioMaterials Laboratory for Energy, Energetics & Environment (nbml-E3); Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA
Bamin Khomami*
Affiliation:
Department of Chemical and Biomolecular Engineering; Department of Mechanical, Aerospace, and Biomedical Engineering; Sustainable Energy Education and Research Center (SEERC), University of Tennessee, Knoxville, TN 37996, USA
*
Address all correspondence to Bamin Khomami and Dibyendu Mukherjee at bkhomami@utk.edu, dmukherj@utk.edu
Address all correspondence to Bamin Khomami and Dibyendu Mukherjee at bkhomami@utk.edu, dmukherj@utk.edu
Get access

Abstract

Rational design of bio-hybrid photovoltaic and/or optoelectronic devices requires systematic electrochemical characterizations of photosystem I (PSI), the photosynthetic membrane protein, assembled onto tailored biotic–abiotic interfaces. This work communicates our research findings on the role of PSI microenvironment alterations at organic/inorganic interfaces, via biomimetic lipid membrane confinements and plasmonic coupling with Ag nano-pyramid structures, in tuning the photoactivated charge separation and photocurrent generations from surface-assembled PSI. The observed photocurrent enhancements and the associated mechanistic insights from this study will facilitate the future design of tailored interfaces that can optimally tune the photoactivity and photostability of PSI in solid-state bioelectronics.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

References

1.Gerster, D., Reichert, J., Bi, H., Barth, J.V., Kaniber, S.M., Holleitner, A.W., Visoly-Fisher, I., Sergani, S., and Carmeli, I.: Photocurrent of a single photosynthetic protein. Nat. Nanotechnol. 7, 673 (2012).Google Scholar
2.Brettel, K. and Leibl, W.: Electron transfer in photosystem I. Biochim. Biophys. Acta Bioenerg. 1507, 100 (2001).Google Scholar
3.Carmeli, I., Mangold, M., Frolov, L., Zebli, B., Carmeli, C., Richter, S., and Holleitner, A.W.: A photosynthetic reaction center covalently bound to carbon nanotubes. Adv. Mater. 19, 3901 (2007).Google Scholar
4.Frolov, L., Rosenwaks, Y., Carmeli, C., and Carmeli, I.: Fabrication of a photoelectronic device by direct chemical binding of the photosynthetic reaction center protein to metal surfaces. Adv. Mater. 17, 2434 (2005).Google Scholar
5.LeBlanc, G., Winter, K.M., Crosby, W.B., Jennings, G.K., and Cliffel, D.E.: Integration of photosystem I with graphene oxide for photocurrent enhancement. Adv. Energy Mater. 4, 5 (2014).Google Scholar
6.Terasaki, N., Yamamoto, N., Hiraga, T., Yamanoi, Y., Yonezawa, T., Nishihara, H., Ohmori, T., Sakai, M., Fujii, M., Tohri, A., Iwai, M., Inoue, Y., Yoneyama, S., Minakata, M., and Enami, I.: Plugging a molecular wire into photosystem I: reconstitution of the photoelectric conversion system on a gold electrode. Angew. Chem. Int. Ed. 48, 1585 (2009).Google Scholar
7.Terasaki, N., Yamamoto, N., Hattori, M., Tanigaki, N., Hiraga, T., Ito, K., Konno, M., Iwai, M., Inoue, Y., Uno, S., and Nakazato, K.: Photosensor based on an FET utilizing a biocomponent of photosystem I for use in imaging devices. Langmuir 25, 11969 (2009).Google Scholar
8.Bennett, T., Niroomand, H., Pamu, R., Ivanov, I., Mukherjee, D., and Khomami, B.: Elucidating the role of methyl viologen as a scavenger of photoactivated electrons from photosystem I under aerobic and anaerobic conditions. Phys. Chem. Chem. Phys. 18, 8512 (2016).Google Scholar
9.Mukherjee, D., May, M., and Khomami, B.: Detergent-protein interactions in aqueous buffer suspensions of photosystem I (PS I). J. Colloid Interface Sci. 358, 477 (2011).Google Scholar
10.Mukherjee, D., May, M., Vaughn, M., Bruce, B.D., and Khomami, B.: Controlling the morphology of photosystem I assembly on thiol-activated Au substrates. Langmuir 26, 16048 (2010).Google Scholar
11.Mukherjee, D., Vaughn, M., Khomami, B., and Bruce, B.D.: Modulation of cyanobacterial photosystem I deposition properties on alkanethiolate Au substrate by various experimental conditions. Colloids Surf. B 88, 181 (2011).Google Scholar
12.Niroomand, H., Mukherjee, D., and Khomami, B.: Tuning the photoexcitation response of cyanobacterial photosystem I via reconstitution into proteoliposomes. Sci. Rep. 7, 2492 (2017).Google Scholar
13.Niroomand, H., Venkatesan, G.A., Sarles, S.A., Mukherjee, D., and Khomami, B.: Lipid-detergent phase transitions during detergent-mediated liposome solubilization. J. Membr. Biol. 249, 523 (2016).Google Scholar
14.Akiyama, T., Nakada, M., Terasaki, N., and Yamada, S.: Photocurrent enhancement in a porphyrin-gold nanoparticle nanostructure assisted by localized plasmon excitation. Chem. Commun. 4, 395 (2006).Google Scholar
15.Lin, S.-J., Lee, K.-C., Wu, J.-L., and Wu, J.-Y.: Plasmon-enhanced photocurrent in dye-sensitized solar cells. Sol. Energy 86, 2600 (2012).Google Scholar
16.Standridge, S.D., Schatz, G.C., and Hupp, J.T.: Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 8407 (2009).Google Scholar
17.Friebe, V.M., Delgado, J.D., Swainsbury, D.J., Gruber, J.M., Chanaewa, A., van Grondelle, R., von Hauff, E., Millo, D., Jones, M.R., and Frese, R.N.: Plasmon-enhanced photocurrent of photosynthetic pigment proteins on nanoporous silver. Adv. Funct. Mater. 26, 285 (2016).Google Scholar
18.Yen, C.-W., Chu, L.-K., and El-Sayed, M.A.: Plasmonic field enhancement of the bacteriorhodopsin photocurrent during its proton pump photocycle. J. Am. Chem. Soc. 132, 7250 (2010).Google Scholar
19.Govorov, A.O. and Carmeli, I.: Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect. Nano Lett. 7, 620 (2007).Google Scholar
20.Nieder, J.B., Bittl, R., and Brecht, M.: Fluorescence studies into the effect of plasmonic interactions on protein function. Angew. Chem. Int. Ed. 49, 10217 (2010).Google Scholar
21.Czechowski, N., Lokstein, H., Kowalska, D., Ashraf, K., Cogdell, R., and Mackowski, S.: Large plasmonic fluorescence enhancement of cyanobacterial photosystem I coupled to silver island films. Appl. Phys. Lett. 105, 043701 (2014).Google Scholar
22.Brecht, M., Hussels, M., Nieder, J.B., Fang, H., and Elsässer, C.: Plasmonic interactions of photosystem I with Fischer patterns made of gold and silver. Chem. Phys. 406, 15 (2012).Google Scholar
23.Kim, I., Bender, S.L., Hranisavljevic, J., Utschig, L.M., Huang, L., Wiederrecht, G.P., and Tiede, D.M.: Metal nanoparticle plasmon-enhanced light-harvesting in a photosystem I thin film. Nano Lett. 11, 3091 (2011).Google Scholar
24.Ashraf, I., Konrad, A., Lokstein, H., Skandary, S., Metzger, M., Djouda, J.M., Maurer, T., Adam, P.M., Meixner, A.J., and Brecht, M.: Temperature dependence of metal-enhanced fluorescence of photosystem I from thermosynechococcus elongates. Nanoscale 9, 4196 (2017).Google Scholar
25.Lichtenberg, D. and Barenholz, Y.: Liposomes: Preparation, Characterization, and Preservation, Methods of Biochemical Analysis (John Wiley & Sons, Inc., New York, 1988), pp. 337, 462.Google Scholar
26.Le, R.K., Raeeszadeh-Sarmazdeh, M., Boder, E.T., and Frymier, P.D.: Sortase-mediated ligation of PsaE-modified photosystem I from Synechocystis sp. PCC 6803 to a conductive surface for enhanced photocurrent production on a gold electrode. Langmuir 31, 1180 (2015).Google Scholar
27.Nowaczyk, M.M. and Plumere, N.: Photosynthesis: short circuit at the chlorophyll. Nat. Chem. Biol. 12, 990 (2016).Google Scholar
28.Zhang, J.Z., Sokol, K.P., Paul, N., Romero, E., van Grondelle, R., and Reisner, E.: Competing charge transfer pathways at the photosystem II-electrode interface. Nat. Chem. Biol. 12, 1046 (2016).Google Scholar
29.Sokol, K.P., Mersch, D., Hartmann, V., Zhang, J.Z., Nowaczyk, M.M., Rogner, M., Ruff, A., Schuhmann, W., Plumere, N., and Reisner, E.: Rational wiring of photosystem II to hierarchical indium tin oxide electrodes using redox polymers. Energy Environ. Sci. 9, 3698 (2016).Google Scholar
Supplementary material: File

Niroomand et al. supplementary material

Figures S1 and S2

Download Niroomand et al. supplementary material(File)
File 2.1 MB