Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-31T09:19:00.969Z Has data issue: false hasContentIssue false

17.8%-efficient Amorphous Silicon Heterojunction Solar Cells on p-type Silicon Wafers

Published online by Cambridge University Press:  01 February 2011

Qi Wang
Affiliation:
qi_wang@nrel.gov, NREL, EDMD, 1617 Cole Blvd, Golden, CO, 80410, United States, 303 384-6681, 303 384-6430
Matt P. Page
Affiliation:
Matt_page@nrel.gov, National Renewable Eenergy Laboratory, 1617 Cole Blvd, Golden, CO, 80410, United States
Eugene Iwancizko
Affiliation:
eugence_iwancizko@nrel.gov, National Renewable Eenergy Laboratory, 1617 Cole Blvd, Golden, CO, 80410, United States
Yueqin Xu
Affiliation:
yueqin_xu@nrel.gov, National Renewable Eenergy Laboratory, 1617 Cole Blvd, Golden, CO, 80410, United States
Yanfa Yan
Affiliation:
yanfa_yan@nrel.gov, National Renewable Eenergy Laboratory, 1617 Cole Blvd, Golden, CO, 80410, United States
Lorenzo Roybal
Affiliation:
Lorenzo_Roybal@nrel.gov, National Renewable Eenergy Laboratory, 1617 Cole Blvd, Golden, CO, 80410, United States
Dean Levi
Affiliation:
dean_levi@nrel.gov, National Renewable Eenergy Laboratory, 1617 Cole Blvd, Golden, CO, 80410, United States
Russell Bauer
Affiliation:
russell_bauer@nrel.gov, National Renewable Eenergy Laboratory, 1617 Cole Blvd, Golden, CO, 80410, United States
Howard M. Branz
Affiliation:
howard_branz@nrel.gov, National Renewable Eenergy Laboratory, 1617 Cole Blvd, Golden, CO, 80410, United States
Qi Wang
Affiliation:
qi_wang@nrel.gov, National Renewable Eenergy Laboratory, 1617 Cole Blvd, Golden, CO, 80410, United States
Get access

Abstract

We have achieved an independently-confirmed 17.8% conversion efficiency in a 1-cm2, p-type, float-zone silicon (FZ-Si) based heterojunction solar cell. Both the front emitter and back contact are hydrogenated amorphous silicon (a-Si:H) deposited by hot-wire chemical vapor deposition (HWCVD). This is the highest reported efficiency for a HWCVD silicon heterojunction (SHJ) solar cell. Two main improvements lead to our most recent increases in efficiency: 1) the use of textured Si wafers, and 2) the application of a-Si:H heterojunctions on both sides of the cell. Despite the use of textured c-Si to increase the short-circuit current, we were able to maintain the same 0.65 V open-circuit voltage as on flat c-Si. This is achieved by coating a-Si:H conformally on the c-Si surfaces, including covering the tips of the anisotropically-etched pyramids. A brief atomic H treatment before emitter deposition is not necessary on the textured wafers, though it was helpful in the flat wafers. It is essential to high efficiency SHJ solar cells that the emitter grows abruptly as amorphous silicon, instead of as microcrystalline or epitaxial Si. The contact on each side of the cell comprises a thin (< 5 nm) low substrate temperature (~100°C) intrinsic a-Si:H layer, followed by a doped layer. Our intrinsic layers are deposited at 0.3-1.2 nm/s. The doped emitter and back-contact layers were deposited at a higher temperature (>200°C) and grown from PH3/SiH4/H2 and B2H6/SiH4/H2 doping gas mixtures, respectively. This combination of low (intrinsic) and high (doped layer) growth temperatures was optimized by lifetime and surface recombination velocity measurements. Our rapid efficiency advance suggests that HWCVD may have advantages over plasma-enhanced (PE) CVD in fabrication of high-efficiency heterojunction c-Si cells; there is no need for process optimization to avoid plasma damage to the delicate, high-quality, Si wafers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Taguchi, M., Kawamoto, K., Tsuge, S., Baba, T., Sakata, H., Morizane, M., Uchihashi, K., Nakamura, N., Kiyama, S., and Oota, O., Prog. PV Res. Appl. 8, 2000, p. 503.Google Scholar
[2] Wang, Q.; Page, M. R.; Iwaniczko, E.; Williams, E.; Yan, Y.; Wang, T. H.; Ciszek, T. F. Proceedings of 3rd World Conference on Photovoltaic Energy Conversion (WCPEC-3), Vol. B, 2003, pp. 14271430.Google Scholar
[3] Wang, Q.; Liu, F.; Han, D. Macromolecular Rapid Communications. Vol. 25(1), 2004; pp. 326329.Google Scholar
[4] Wang, Q.; Iwaniczko, E. Mat. Res. Soc. Proc., Vol. 715. 2002 pp. 547552.Google Scholar
[5] Xu, Y.; Yan, B.; Nelson, B. P.; Iwaniczko, E.; Reedy, R. C.; Mahan, A. H.; Branz, H. Mat. Res. Soc. Proc., Vol. 808. 2004, pp. 617621.Google Scholar
[6] Wang, T.H., Iwaniczko, E., Page, M.R. Levi, D.H., Yan, Y., Yelundur, V., Branz, H.M., Rohatgi, A., and Wang, Q., 31st IEEE Photovoltaic Specialists Conference, Orlando, Florida, 2005, pp. 955958.Google Scholar
[8] Levi, D. H.; Teplin, C. W.; Iwaniczko, E.; Yan, Y.; Wang, T. H.; Branz, H. M. Mat. Res. Soc. Proc., Vol. 862. 2005, pp. 159170 Google Scholar
[9] Wang, T.H., Iwaniczko, E., Page, M.R. Levi, D.H., Yan, Y., Yelundur, V., Branz, H.M., Rohatgi, A., and Wang, Q., 31st IEEE Photovoltaic Specialists Conference, Orlando, Florida, 2005, pp. 955958.Google Scholar