Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-08T08:34:02.000Z Has data issue: false hasContentIssue false

Advanced Stacked Elemental Layer Process for Cu(InGa)Se2 Thin Film Photovoltaic Devices

Published online by Cambridge University Press:  10 February 2011

V. Probst
Affiliation:
Siemens AG, Corporate Research and Development, Domagkstr. 11, 80807 München, Germany, volker.probst@zfe.siemens.de
F. Karg
Affiliation:
Siemens Solar GmbH, Domagkstr. 11, 80807 München, Germany
J. Rimmasch
Affiliation:
Siemens AG, Corporate Research and Development, Domagkstr. 11, 80807 München, Germany, volker.probst@zfe.siemens.de
W. Riedl
Affiliation:
Siemens AG, Corporate Research and Development, Domagkstr. 11, 80807 München, Germany, volker.probst@zfe.siemens.de
W. Stetter
Affiliation:
Siemens AG, Corporate Research and Development, Domagkstr. 11, 80807 München, Germany, volker.probst@zfe.siemens.de
H. Harms
Affiliation:
Siemens AG, Corporate Research and Development, Domagkstr. 11, 80807 München, Germany, volker.probst@zfe.siemens.de
O. Eibl
Affiliation:
Siemens AG, Corporate Research and Development, Domagkstr. 11, 80807 München, Germany, volker.probst@zfe.siemens.de
Get access

Abstract

Targeting large area and low cost processing of highly efficient thin film solar modules an advanced stacked elemental layer process for Cu(InGa)Se2 (CIGS) thin films is presented. Key process steps are i) barrier coating of the soda lime glass substrate combined with the addition of a sodium compound to the elemental Cu/In/Ga/Se-precursor stack and ii) rapid thermal processing (RTP) to form the CIGS compound.

By this strategy exact impurity control is achieved and the advantageous influence of sodium on device performance and on CIGS film formation is demonstrated unambiguously by means of electrical characterisation, XRD, SEM, TEM and SIMS. Sodium enriched and sodium free precursor stacks were heated to intermediate states (300°C–500°C) of the RTPreaction process. The experiment clearly reveals that on the reaction pathway to the chalcopyrite semiconductor increased amounts of copper-selenide are formed, if sodium is added to the precursor films. TEM-electron diffraction unambiguously identifies the CuSe-phase which is localised at the surface of the forming CIGS-film. These experimental findings propose a sodium assisted quasi liquid growth model for the CIS formation taking into account that sodium promotes the existence of CuSe at higher temperatures and its effect as a flux agent. The model contributes to a better understanding of the observed superior crystal qualitiy for sodium enriched in contrast to sodium free CIGS films.

Application of these experimental findings in the technique of the optimized and controlled sodium incorporation significantly improves process reproducibility, CIGS film homogenity over larger substrate areas and shifts the average efficiency of cells and modules to a significantly higher level. This is demonstrated by a 12-cell integrated series connected minimodule with an aperture area of 51 cm2 and a confirmed efficiency of 11.75 %.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hedström, J., Ohlsen, H., Bodegard, M., Kylner, A., Stolt, L., Hariskos, D., Ruckh, M. and Schock, H. W., Proc. 23rd IEEE PVSC Louisville, p. 364, (1993)Google Scholar
2. Tuttle, J. R., Contreras, M. A., Gillespie, T. J., Ramanathan, K. R., Tennant, A. L., Keane, J., Gabor, A. M., Noufi, R., Prog. in Photovoltaics Vol.3, p. 235 (1995)Google Scholar
3. Ermer, J., Fredric, C., Hummel, J., Jensen, C., Pier, D., Tarrent, D., Mitchell, K. W. Proc. of the 21st IEEE PVSC p. 595 (1990)Google Scholar
4. Gay, R., Dietrich, M., Fredric, C., Jensen, C., Knapp, K., Tarrent, D., Willett, D. Proc. of the 12th EC PVSEC, p. 935 (1994)Google Scholar
5. Bodegard, M., Stolt, L., Hedström, J. Proc. of the 12th EC PVSEC, p. 1743 (1994)Google Scholar
6. Holz, J., Karg, F., Philipsborn, H. von, Proc. of the 12th EC PVSEC, p. 1592 (1994)Google Scholar
7. Karg, F., Probst, V., Harms, H., Rimmasch, J., Riedl, W., Kotschy, J., Holz, J., Treichler, R., Eibl, O., Mitwalsky, A., Kiendl, A., Proc. 23rd IEEE PVSC Louisville, 1993, p. 44 1Google Scholar
8. Probst, V., Rimmasch, J., Riedl, W., Stetter, W., Holz, J., Harms, H., Karg, F., Schock, H. W. Proc. 24th IEEE PV Spec. Conf., Hawaii 1994, p. 144 Google Scholar
9. Casteleyn, M., Burgelman, M., Depuydt, B., Niemegeers, A., Clemminck, I., 24th IEEE PV Spec. Conf., Hawaii 1994, p 230 Google Scholar
10. Effenberger, H. and Pertlik, F.; N. Jb. Miner. Mh. 5 (1981) 197 Google Scholar
11. Klenk, R., Walter, Th., Schock, H.W., Cahen, D., Adv. Mater. 1993, 5, No.2, p114 Google Scholar
12. Tuttle, J. R., Contreras, M., Bode, M. H., Niles, D., Albin, D. S., Matson, R., Gabor, A. M., Tennant, A., Duda, A., Noufi, R., J. Appl. Phys. (1), 1. Jan 1995, p 153 Google Scholar
13. Zweigart, S., Walter, Th., Köble, Ch., Sun, S. M., Rühle, U., Schock, H.W., 24th IEEE PV Spec. Conf, Hawaii 1994, p 61 Google Scholar
14. Yamnanaka, S., McCandless, B. E., Birkmire, R. W., Proc. 23rd IEEE PVSC Louisville, 1993, p. 607 Google Scholar
15. Adamson, A. W. in Physical Chemistry of Surfaces, Wiley, New York, 1990 Google Scholar