Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-05T05:58:00.076Z Has data issue: false hasContentIssue false

Atomic Structure of Ultrathin Erbium Silicides on Si(111)

Published online by Cambridge University Press:  21 February 2011

M. Lohmeier
Affiliation:
Institute for Atomic and Molecular Physics, 1098 SJ Amsterdam, the Netherlands
W. J. Huisman
Affiliation:
Institute for Atomic and Molecular Physics, 1098 SJ Amsterdam, the Netherlands
G. Ter Horst
Affiliation:
Institute for Atomic and Molecular Physics, 1098 SJ Amsterdam, the Netherlands
P. M. Zagwijn
Affiliation:
Institute for Atomic and Molecular Physics, 1098 SJ Amsterdam, the Netherlands
A. Nishiyama
Affiliation:
ULSI Research Laboratories, Toshiba Corporation, Kawasaki, Japan
C. L. Nicklin
Affiliation:
Dept. of Physics and Astronomy, University of Leicester, Leicester, United Kingdom
T. S. Turner
Affiliation:
Daresbury Rutherford Appleton Laboratories, Daresbury, United Kingdom
E. Vlieg
Affiliation:
Institute for Atomic and Molecular Physics, 1098 SJ Amsterdam, the Netherlands
Get access

Abstract

The atomic structure of thin epitaxial erbium suicides on Si(111) substrates has been studied in situ by means of surface X-ray diffraction and medium-energy ion scattering. In the sub-monolayer range, a two-dimensional (2D) suicide is formed within a 1 × 1 unit cell, with the Er atoms occupying T4 sites and a Si bilayer on top which is 180° rotated with respect to the bulk (5-type). Suicide layers with a thickness of 3 monolayers exhibit a regular network of Si vacancies which release the compressive strain of the graphite-like Si layers between adjacent Er layers. This results in a √3 × √3 R 30° unit cell, in which 3 out of 5 Si atoms are displaced towards the vacancy, and in which 3 Er atoms relax away from the vacancy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Knapp, J.A. and Picraux, S.T., Appl. Phys. Lett. 48, 466 (1985).Google Scholar
2. Arnaud d'Avitaya, F., Perio, A., Oberlin, J.-C., Campidelli, Y., and Chroboczek, J.A., Appl. Phys. Lett. 54, 2198 (1989).Google Scholar
3. Duboz, J.Y., Badoz, P.-A., Arnaud d'Avitaya, F., and Chroboczek, J.A., Appl. Phys. Lett. 55, 84 (1989).Google Scholar
4. Janega, P.L., McCaffrey, J., and Landheer, D., Appl. Phys. Lett. 55, 1415 (1989).Google Scholar
5. Pahun, L., Campidelli, Y., Arnaud d'Avitaya, F., and Badoz, P.A., Appl. Phys. Lett. 60, 1166 (1992).Google Scholar
6. Auffret, S., Pierre, J., Lambert, B., Soubeyroux, J.L., and Chroboczek, J.A., Physica B 162, 271 (1990).Google Scholar
7. Duboz, J.Y., Badoz, P.-A., Perio, A., Oberlin, J.-C., Arnaud d'Avitaya, F., Campidelli, Y., and Chroboczek, J.A., Appl. Surf. Sci. 38, 171 (1989).Google Scholar
8. Unewisse, M.H. and Storey, J.W.V., J. Appl. Phys. 73, 3873 (1993).Google Scholar
9. Wetzel, P., Pirri, C., Paki, P., Bolmont, D., and Gewinner, G., Phys. Rev. B 47, 3677 (1993).Google Scholar
10. Stauffer, L., Mharchi, A., Pirri, C., Wetzel, P., Bolmont, D., Gewinner, G., and Minot, C., Phys. Rev. B 47, 10555 (1993).Google Scholar
11. Tuilier, M.H., Wetzel, P., Pirri, G., Bolmont, D., and Gewinner, G., Phys. Rev. B 50, 2333 (1994).Google Scholar
12. Tuilier, C., Wetzel, Pirri P., Gewinner, G., Veuillen, J.-Y., and Nguyen Tan, T.A., Surf. Sci. 307–309, 710 (1994).Google Scholar
13. van der Veen, J.F., Surf. Sci. Rep. 5, 199 (1985).Google Scholar
14. Feidenhans'l, R., Surf. Sci. Rep. 10, 105 (1989).Google Scholar
15. Robinson, I.K., Phys. Rev. B 33, 3830 (1986).Google Scholar
16. Mareé, P.M.J., de Jongh, A.P., Derks, J.W., and van der Veen, J.F., Nucl. Instr. Meth. B 28, 76 (1987).Google Scholar
17. Norris, C., Finney, M.S., Clark, G.F., Baker, G., Moore, R.R., and van Silfhout, R.G., Rev. Sci. Instr. 63, 1083 (1992).Google Scholar
18. Vlieg, E., van't Ent, A., de Jongh, A.P., Neerings, R., and van der Veen, J.F., Nucl. Instr. Meth. A 262, 522 (1987).Google Scholar
19. Forthe 1 × 1 unit cell, we use the following unit cell vectors: a1 = l/2[101] a2 = 1/2 [110] and a3 = [111]. In reciprocal space coordinates (hkl), h and k thus denote in-plane momentum transfers, whereas l denotes the out-of-plane momentum transfer.Google Scholar
20. Takayanagi, K., Tanishiro, Y., Takahashi, M., and Takahashi, S., Surf. Sci. 164, 367 (1985).Google Scholar
21. Vlieg, E., van der Veen, J.F., Gurman, S.J., Norris, C., and Macdonald, J.E., Surf. Sci. 210, 301 (1989).Google Scholar
22. Lohmeier, M., Huisman, W.J., ter Horst, G., Zagwijn, P., Nishiyama, A., Nickiin, C.L., Turner, T.S., and Vlieg, E., in preparation.Google Scholar