Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-08T08:04:33.843Z Has data issue: false hasContentIssue false

Atomistic Study of the Clean and Hydroxylated TiO2 Surface

Published online by Cambridge University Press:  15 February 2011

R. Podloucky
Affiliation:
Inst. f. Physical Chemistry, Univ. Vienna, Währingerstrasse 42, A-1090 Vienna, Austria
S. G. Steinemann
Affiliation:
Inst. f. Experimental Physics, Univ. Lausanne, CH-1015 Lausanne-Dorigny, Switzerland
A. J. Freeman
Affiliation:
Dept. of Physics, Northwestern Univ., Evanston, IL 60208-3112, USA
Get access

Abstract

The coverage of an oxidized Ti-surface by amphoteric OH groups seems to be the driving mechanism for the attachement of bone material to Ti-implants. To contribute to the quantitative and fundamental understanding of this phenomenon, an ab-inito surface method was applied to calculate the electronic structure and energetics of the clean and hydroxylated (110) TiO2 rutile surface. Some of the most important relaxation and reconstruction effects of surface geometries were derived from total energy minimization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Steinemann, S., in Oral Implantology, eds. Schroeder, A., Sutter, F. and Krekeler, G. (Thieme Medical Publishers, Inc., New York, 1991), pp 37.Google Scholar
2. Boehm, H.-P., Angewandte Chemie 78, 617 (1966); H.-P. Boehm, Disc. Far. Soc. 52, Surf. Chem. of Oxides, 1971.CrossRefGoogle Scholar
3. Mäusli, P.-A., Bloch, P.R., Geret, V. and Steinemann, S.C., in Biological and Biomechanical Performance of Biomaterials, eds. Christel, P., Meunier, A. und Lee, A.J.C., Elsevier (Amsterdam), pp 57, 1986; J.M. Gold, M. Schmidt and S.G. Steinemann, Helvetica Physica Acta, 62, 246 (1989); J.M. Gold, M. Schmidt and S.G. Steinemann, Clinical Implant Materials, eds. G. Heimke, U. Soltész and A.J.C. Lee, Advances in Biomaterials, vol.9, (Elsevier, Amsterdam, 1990), p69.Google Scholar
4. Hohenberg, P. und Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn und L.J. Sham, Phys. Rev. 140, A1133 (1965); L. Hedin und B.I. Lundqvist, J. Phys. C 4, 2064 (1971);CrossRefGoogle Scholar
5. Krakauer, H., Posternak, M. und Freeman, A.J., Phys. Rev. B 19, 1706 (1979); M. Posternak, H. Krakauer, A.J. Freeman und D.D. Koelling, Phys. Rev. B 21, 5601 (1980); E. Wimmer, H. Krakauer, M. Weinert und A.J. Freeman, Phys. Rev. B 24, 864 (1981);CrossRefGoogle Scholar
6. Wimmer, E., Krakauer, H. und Freeman, A.J., in Advances in Electronics and Electron Physics vol.65, 357 (1985).CrossRefGoogle Scholar
7. Tsukuda, M., Satoko, C. und Adachi, H., J. Phys. Soc. Japan 44, 1043 (1978); M. Tsukuda, C. Satoko und H. Adachi, J. Phys. Soc. Japan 47, 1610 (1979); T. Kawai, M. Tsukuda, H. Adachi, C. Satoko und T. Sakata, Surf. Sci. 81, L640 (1979); M. Tsukuda, H. Adachi und C. Satoko, Surf. Sci. 14, 113 (1983);CrossRefGoogle Scholar
8. Kasowski, R.V. und Tait, R.H., Phys. Rev. B 20, 5168 (1979); S. Munnix und M. Schmeits, Surf. Sci. 126, 20 (1983); S. Munnix und M. Schmeits, Phys. Rev. B 28, 7342 (1983); S. Munnix und M. Schmeits, Phys. Rev. B 30, 2202 (1984); S. Munnix und M. Schmeits, Phys. Rev. B 31, 3369 (1984).CrossRefGoogle Scholar