Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T01:27:54.343Z Has data issue: false hasContentIssue false

Carbon Film Deposition On Silicon Using Low Energy Ion Beams

Published online by Cambridge University Press:  16 February 2011

Qin Fuguang
Affiliation:
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, R.P. China
Yao Zhenyu
Affiliation:
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, R.P. China
Ren Zhizhang
Affiliation:
Institute of Semiconductors, Chinese Academy of Sciences, Beijing, R.P. China
S.-T. Lee
Affiliation:
Eastman Kodak Company, Rochester, NY 14650-2132, USA
I. Bello
Affiliation:
Surface Science Western, University of Western Ontario, London, Ontario, Canada N6A 5B7
X Feng
Affiliation:
Surface Science Western, University of Western Ontario, London, Ontario, Canada N6A 5B7
L. J. Huang
Affiliation:
Surface Science Western, University of Western Ontario, London, Ontario, Canada N6A 5B7
W. M. Lau
Affiliation:
Surface Science Western, University of Western Ontario, London, Ontario, Canada N6A 5B7
Get access

Abstract

Direct ion beam deposition of carbon films on silicon in the ion energy range of 15–500eV and temperature range of 25–800°C has been studied using mass selected C+ ions under ultrahigh vacuum. The films were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy and diffraction analysis. Films deposited at room temperature consist mainly of amorphous carbon. Deposition at a higher temperature, or post-implantation annealing leads to formation of microcrystalline graphite. A deposition temperature above 800°C favors the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation was observed in these films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example, Angus, J.C. and Hayman, C.C., Science 241, 913(1988).Google Scholar
2. See for example, T., Itoh, ed., “Ion beam assisted film growth”, Elsevier, Amsterdam, 1989.Google Scholar
3. Aisenberg, S. and Chabot, R., J. Appl. Phys. 42, 2953(1971).Google Scholar
4. Freeman, J.H., Temple, W., and Gard, G.A., Vacuum 34, 305(1984).Google Scholar
5. Nelson, R.S., Hudson, J. A, Piller, R.C., and Mazey, D.A., British Patent #1, 476313.Google Scholar
6. Spencer, E.G., Schmidt, P.H., Joy, D.C., and Sansalone, F.J., Appl. Phys. Lett. 29, 118(1976).Google Scholar
7. Chaikovskii, E.F., Puzikov, V.M., and Semenov, A.V., Soy. Phys. Crystallogr. 26, 122(1981).Google Scholar
8. Mori, T. and Namba, Y., J. Vac. Sci. Technol. A 1, 23(1983).Google Scholar
9. Kitabatake, M. and Wasa, K., J. Appl. Phys. 58, 1693(1985).Google Scholar
10. Qin, F., Yao, Z., Wang, X., Liu, Z., Ren, Z., and Lin, L., Proc. 2nd Internat. Conf. on Solid State and Integrated Circuit Technology, Mo, B., ed., October 1989, Beijing, P.R. China.Google Scholar
11. Miyazawa, T., Misawa, S., Yoshida, S., and Gonda, S., J. Appl. Phys. 55, 188(1984).Google Scholar
12. See for examples, Robertson, J. L, Jiang, X.G., Chow, P.C., Moss, S.C., Lifshitz, Y., Kasi, S.R., Rabalais, J.W., and Adar, F., Mat. Res. Soc. Symp. Proc. 152, 9(1989); S.R. Kasi, H. Kang, and J.W. Rabalais, J. Chem. Phys. 88, 5914(1988).Google Scholar
13. Lee, S.-T., Chen, S., and Braunstein, G., Feng, X., Bello, I., and Lau, W.M., submitted to Appl. Phys. LettGoogle Scholar
14. Lau, W.M., Feng, X., Bello, I., Sant, S., Foo, K.K., and Lawson, R.P.W., Nucl. Instrum. Methods B, in press.Google Scholar
15. Qin, F., Wang, X., Liu, Z., Yao, Z., Ren, Z., Lin, L, Su, S., Jiang, W., and Lau, W.M., J. Appl. Phys., submitted.Google Scholar
16. Wagner, C.D., Riggs, W.M., Davis, L.E., Moulder, J.F., and Muilenberg, G.E., “Handbook of X-ray photoelectron spectroscopy”, Perkin-Elmer, Eden Prairie, MN, 1979.Google Scholar
17. Belton, D.N., Harris, S.J., Schmieg, S.J., Weiner, A. M., and Perry, T.A., AppI. Phys. Lett. 54, 416(1989).Google Scholar
18. Johnson, W. L III, Microbeam Analysis -1986, Romig, A.D. Jr. and Chambers, W.F., eds., San Francisco Press, Inc., San Francisco, USA, 1986, p.26.Google Scholar
19. See for example, Knight, D.S. and White, W.B., J. Mater. Res. 4, 385(1989).Google Scholar
20. Dillon, R.O., Woollam, J.A., and Katkanant, V., Phys. Rev. B 29, 3482(1984).Google Scholar
21. Kitahama, K., Appl. Phys. Lett. 53, 1812(1988).Google Scholar
22. Huang, L.J. and Lau, W.M., submitted to Phys. Rev. Lett.Google Scholar
23. Harris, S.J. and Martin, L.R., J. Mater. Res. 5, 2313(1990).Google Scholar
24. See for example, Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036(1991).Google Scholar