Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-01T17:14:43.962Z Has data issue: false hasContentIssue false

Changing Segregation Coefficients During Ion Beam Induced Epitaxy of Amorphous Si

Published online by Cambridge University Press:  26 February 2011

J. S. Custer
Affiliation:
Dept. of Materials Science and Engineering, Cornell University, Ithaca, NY 14853 Now at: FOM Institute for Atomic and Molecular Physics, 1098 SJ Amsterdam, the Netherlands
Michael O. Thompson
Affiliation:
Dept. of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
D. C. Jacobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Ion beam induced epitaxial crystallization of Au and Ag doped amorphous Si results in segregation and trapping of the impurity. Combining the measured interface velocity and impurity profiles in segregation simulations provides a measure of the segregation coefficient k during growth. To adequately match the experimental profiles, k must increase during the early stage of growth until saturating at a temperature dependent value. This segregation process cannot be explained within standard models where k depends on the inteface velocity (kinetic trapping) or the interface impurity concentration (thermodynamic solubility). Instead the data suggests that the number of trapping sites at the interface increases during the initial stages of ion beam induced growth. We present several possible mechanisms for this trapping increase and discuss their significance in ion beam and thermal epitaxy models.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Olson, G. L. and Roth, J. A., Materials Science Reports 3, 1 (1988).Google Scholar
2. Csepregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
3. Lu, G. Q., Nygren, E., Aziz, M. J., Turnbull, D., and White, C. W., Appl. Phys. Lett. 54, 2583 (1989).Google Scholar
4. Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4234 (1977).Google Scholar
5. Jacobson, D. C., Poate, J. M., and Olson, G. L., Appl. Phys. Lett. 40, 118 (1986).Google Scholar
6. Kennedy, E. F., Csepregi, L., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4241 (1977).Google Scholar
7. Holmén, G. and Høgberg, P., Radiat. Eff. 12, 77 (1972).Google Scholar
8. Linnros, J., Holmén, G., and Svensson, B., Phys. Rev. B 32, 2270 (1985).Google Scholar
9. Maher, D. M., Elliman, R. G., Linnros, J., Williams, J. S., Knoell, R. V., and Brown, W. L., Mat. Res. Soc. Symp. Proc. 93, 87 (1987).Google Scholar
10. Priolo, F., Spinella, C., La Ferla, A., Rimini, E., and Ferla, G., Appl. Surf. Sci. 43, 178 (1989).Google Scholar
11. Custer, J. S., Thompson, Michael O., Jacobson, D. C., and Poate, J. M., Mat. Res. Soc. Symp. Proc. 157, 113 (1990).Google Scholar
12. Williams, J. S., Elliman, R. G., Brown, W. L., and Seidel, T. E., Phys. Rev. Lett. 66, 1482 (1985),Google Scholar
Linnros, J. and Holmén, G., J. Appl. Phys. 59, 1513 (1986).Google Scholar
13. Custer, J. S., Thompson, Michael O., Eaglesham, D. J., Jacobson, D. C., and Poate, J. M., unpublished.Google Scholar
14. Poate, J. M., Linnros, J., Priolo, F., Jacobson, D. C., Batstone, J. L., and Thompson, Michael O., Phys. Rev. Lett. 60, 1322 (1988).Google Scholar
15. Poate, J. M., Jacobson, D. C., Williams, J. S., Elliman, R. G., and Boerma, D. O., Nucl. Instr. and Meth. B19/20, 480 (1987),Google Scholar
Priolo, F., Poate, J. M., Jacobson, D. C., Linnros, J., Batstone, J. L., and Campisano, S. U., Appl. Phys. Lett. 52, 1213 (1988).Google Scholar
16. Priolo, F., Batstone, J. L., Poate, J. M., Linnros, J., Jacobson, D. C., and Thompson, Michael O., Appl. Phys. Lett. 52, 1043 (1988).Google Scholar
17. Aziz, M. J., Tsao, J. Y., Thompson, Michael O., Peercy, P. S., White, C. W., Phys. Rev. Lett. 56, 2489 (1986).Google Scholar
18. Spaepen, F., Acta. Met. 23, 729 (1975),Google Scholar
Spaepen, F., Acta. Met. 26, 1167 (1978).Google Scholar
19. Williams, J. S. and Elliman, R. G., Phys. Rev. Lett. 51, 1069 (1983).Google Scholar
20. Priolo, F., Spinella, C., and Rimini, E., Phys. Rev. B 41, 5235 (1990).Google Scholar
21. Jackson, K. A., J. Mater. Res. 3, 1218 (1988).Google Scholar
22. Aspnes, D. E. and Ihm, J., Phys. Rev. Lett. 57, 3054 (1986).Google Scholar
23. Alerhand, O. L., Vanderbilt, D., Meade, R. D., and Joannopoulos, J. D., Phys. Rev. Lett. 61, 1973 (1988).Google Scholar
24. Ampo, H., Miura, S., Kato, K., Ohkawa, Y., and Tamura, A., Phys. Rev. B 34, 2329 (1986).Google Scholar
25. Robinson, I. K., Waskiewicz, W. K., Tung, R. T., and Bohr, J., Phys. Rev. Lett. 57, 2714 (1986).Google Scholar