Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-13T07:33:11.961Z Has data issue: false hasContentIssue false

Chemical Beam Epitaxial Growth and Capacitance-Voltage Characterization of Si δ-Doped GaAs

Published online by Cambridge University Press:  26 February 2011

T. H. Chiu
Affiliation:
AT–T Bell Laboratories, Crawfords Corner Road, Holmdel, NJ 07733
E. F. Schubert
Affiliation:
AT–T Bell Laboratories, Crawfords Corner Road, Holmdel, NJ 07733
J. E. Cunningham
Affiliation:
AT–T Bell Laboratories, Crawfords Corner Road, Holmdel, NJ 07733
W. T. Tsang
Affiliation:
AT–T Bell Laboratories, Crawfords Corner Road, Holmdel, NJ 07733
B. Tell
Affiliation:
AT–T Bell Laboratories, Crawfords Corner Road, Holmdel, NJ 07733
Get access

Abstract

High quality GaAs layers have been grown by chemical beam epitaxy using triethylgallium and arsine. Undoped GaAs epilayer with net acceptor concentration NA - ND = 3}10 14cm-3 has been obtained at a low growth temperature of 500°C. Si dopant diffusion at such low temperature during growth is negligible. Using monolayer doping technique epilayers with Si impurities localized in a 2-dimensional plane were prepared. Capacitance-voltage profiling showed a high sheet electron concentration of lx1013cm-2 and peak widths of 22Å and 18Å at 300K and 77K, respectively, which are the narrowest ever reported. For samples grown or annealed at higher temperatures, significant impurity diffusion was observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Veuhoff, E., Pletschen, W., Balk, P. and Lith, H., J. Crystal Growth 55, 30 (1981).Google Scholar
[2]Tasang, W. T., Appl. Phys. Lett. 45, 1234 (1984).Google Scholar
[3]Horiguchi, S., Kimura, K., Kamon, K., Mashita, M., Shimazu, M., Mihara, M. and Ishii, M., Jap. J. Appl. Phys. 25, L979 (1986).Google Scholar
[4]Chiu, T. H., Tasang, W. T., Ditzenberger, J. A., Tu, C. W., Ren, F. and Wu, C. S., J. Electron Mater. January 1988.Google Scholar
[5]Chiu, T. H., Tsang, W. T., Robertson, A Jr., and Cunningham, J. E., J. Appl. Phys. 62, 2302 (1987); Appl. Phys. Lett. 50, 1376 (1987).Google Scholar
[6]Piitz, N., Heinecke, H., Heyen, M., Balk, P., Weyers, M. and Liith, H., J. Crystal Growth, 74, 292 (1986).Google Scholar
[7]Chiu, T. H., Tsang, W. T., Schubert, E. F. and Agyekum, E., Appl. Phys. Lett. 51, 1109 (1987).Google Scholar
[8]Robertson, A Jr, Chiu, T. H., Tsang, W. T. and Cunningham, J. E., J. Vac. Sci. Tech. B, April 1988Google Scholar
[9]Schubert, E. F., Cunningham, J. E., Tsang, W. T. and Timp, G., Appl. Phys. Lett. 51, 1170 (1987).Google Scholar
[10]Ishikawa, T., Ogasawara, K., Nakamura, T., Kuroda, S. and Kondo, K., J. Appl. Phys. 61, 1937 (1987).Google Scholar
[11]Kwo, T., Chiu, T. H., Cunningham, J. E. and Schubert, E. F., (unpublished).Google Scholar
[12]Sasa, S., Muto, S., Kondo, K., Ishikawa, J. and Hiyamizu, S., Jap. J. Appl. Phys. 24, L602 (1985).Google Scholar
[13]Johnson, W. C., Panousis, P. T.: IEEE Trans. Electron Devices ED 18, 965 (1971).Google Scholar
[14]Schubert, E. F. and Ploog, K., Jpn. J. Appl. Phys. 25, 966 (1986).Google Scholar
[15]Schubert, E. F., Cunningham, J. E., Tsang, W. T. and Chiu, T. H., Appl. Phys. Lett. 49, 292(1986).Google Scholar