Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-12T13:58:41.741Z Has data issue: false hasContentIssue false

Comparison of Hardness Enhancement and Wear Mechanisms in Low Temperature Nitrided Austenitic and Martensitic Stainless Steel

Published online by Cambridge University Press:  01 February 2011

S. Mändl
Affiliation:
Leibniz-Institut für Oberflächenmodifizierung, Permoserstr. 15, 04303 Leipzig, Germany
D. Manova
Affiliation:
Leibniz-Institut für Oberflächenmodifizierung, Permoserstr. 15, 04303 Leipzig, Germany
D. Hirsch
Affiliation:
Leibniz-Institut für Oberflächenmodifizierung, Permoserstr. 15, 04303 Leipzig, Germany
H. Neumann
Affiliation:
Leibniz-Institut für Oberflächenmodifizierung, Permoserstr. 15, 04303 Leipzig, Germany
B. Rauschenbach
Affiliation:
Leibniz-Institut für Oberflächenmodifizierung, Permoserstr. 15, 04303 Leipzig, Germany
Get access

Abstract

Energetic nitrogen implantation into austenitic stainless steel or nickel alloys leads to the formation of a very hard and wear resistant surface layer with an expanded lattice, while similar results are reported for selected martensitic steels. A comparison of the phase formation under identical process conditions at 380 °C using an austenitic (304) and a martensitic (420) steel grade (in an annealed ferrite/cementite condition) shows that the initial microstructure is retained in both of them. As the formation of dislocations and stacking faults cannot account for the dramatic hardness increase, the build-up of compressive stress is proffered as an explanation covering these two steel types. Furthermore the energetic nitrogen implantation apparently stabilizes the expanded lattice with suppressing the chemical transition to iron nitrides and, for steel 420, the metallurgical transition towards austenite at high nitrogen contents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Williamson, D. L., Davis, J.A. and Wilbur, P. J., Surf. Coat. Technol. 103–104, 178 (1998).Google Scholar
2. Menthe, E. and Rie, K.-T., Surf. Coat. Technol. 116–119, 193 (1999).Google Scholar
3. Mändl, S. and Rauschenbach, B., Defect Diffus. Forum 188–190, 125 (2001).Google Scholar
4. Mändl, S. and Rauschenbach, B., J. Appl. Phys. 91, 9737 (2002).Google Scholar
5. Mändl, S. and Rauschenbach, B., J. Appl. Phys. 88, 3323 (2000).Google Scholar
6. Kim, S. K., Yoo, J.S., Priest, J. M. and Fewell, M. P., Surf. Coat. Technol. 163–164, 380 (2003).Google Scholar
7. Marchev, K., Cooper, C. V. and Giessen, B. C., Surf. Coat. Technol. 99, 229 (1998).Google Scholar
8. Alphonsa, I., Chainani, A., Raole, P. M., Ganguli, B. and John, P. I., Surf. Coat. Technol. 150, 263 (2002).Google Scholar
9. Leyland, A., Lewis, D. B., Stevenson, P. R. and Matthews, A., Surf. Coat.Technol. 62, 608 (1993).Google Scholar
10. Mändl, S. and Rauschenbach, B., Surf. Coat. Technol. 186, 277 (2004).Google Scholar
11. Conrad, J. R., Radtke, J. L., Dodd, R. A., Worzala, F. J. and Tran, N. C., J. Appl. Phys. 62, 4591 (1987).Google Scholar
12. Collins, G. A., Hutchings, R., Tendys, J. and Samandi, M., Surf. Coat. Technol. 68–69, 285 (1994).Google Scholar
13. Sienz, S., Mändl, S. and Rauschenbach, B., Surf. Coat. Technol. 156, 185 (2002).Google Scholar
14. Schäffler, A. L., Metal Progress 56, 680 (1949).Google Scholar
15. Gavriljuk, V. G. and Berns, H., High Nitrogen Steels, (Springer, Berlin, 1999) p. 236.Google Scholar
16. Williamson, D. L., Ozturk, O., Wie, R. and Wilbur, J. P., Surf. Coat. Technol. 65, 15 (1994).Google Scholar
17. Li, X., Samandi, M., Dunne, D., Collins, G., Tendys, J., Short, K. and Hutchings, R., Surf. Coat. Technol. 85, 28 (1996).Google Scholar
18. Jack, K. H., Acta Crystallogr. 13, 392 (1950).Google Scholar
19. Nastasi, M., Mayer, J. W. and Hirvonen, J. K., Ion-solid interactions, (Cambridge University Press, Cambridge, 1996) p 332.Google Scholar
20. Willaime, F., Adv. Eng. Mat. 3, 283 (2001) 283.Google Scholar
21. Wong, J., Krisch, M., Farber, D. L., Occelli, F., Schwartz, A.J., Chiang, T.-C., Wall, M., Boro, C. and Xu, R., Science 301, 1078 (2001).Google Scholar