Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-02T15:38:35.237Z Has data issue: false hasContentIssue false

Contact Reactions at Cu / a-Ge Thin Film Couples

Published online by Cambridge University Press:  21 February 2011

Uwe KÖster
Affiliation:
Dept.Chem.Eng., University of Dortmund, D-44221 Dortmund, F.R. Germany
Klaus P. Blennemann
Affiliation:
Dept.Chem.Eng., University of Dortmund, D-44221 Dortmund, F.R. Germany
Axel Schulte
Affiliation:
Dept.Chem.Eng., University of Dortmund, D-44221 Dortmund, F.R. Germany
Get access

Abstract

The aim of this paper is to investigate phase formation and growth kinetics in thin film Cu/a-Ge difflusion couples (150 nm Cu / 150 nm Ge) by means of cross-sectional transmission electron microscopy. During annealing in the temperature range between 100 and 180°C a highly supersaturated ζ-phase was formed first; the growth of this phase exhibits a parabolic dependence, thus indicating diffusion controlled growth; further annealing leads to a transformation into the orthorhombic ε1-phase. The first phase formed during the contact reaction probably depends on the texture and orientation of the copper layer with (111) Cu favouring the formation of the ζ-phase. When in contact with crystalline Ge the orthorhombic ε1-phase is formed directly, probably caused by a lack of driving force for the formation of the ζ-phase.

Crystallization of Cu-contaminated amorphous Ge is characterized by the formation of an extremely fine-grained microstructure; higher Cu contents lead to primary crystallization of the ε1-phase (orthorhombic Cu3Ge) followed by polymorphous crystallization of the amorphous matrix into crystalline Ge. These results indicate that the early formation of a crystalline interlayer is not due to the reduced crystallization temperature of an amorphous Ge(Cu) film as formed by Cu diffusion into the amorphous Ge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aboelfotoh, M.O., EP 0 419 763 Al;Google Scholar
[2] Gendig, C., Blennemann, K.P., Köster, U., Dortmund 1993, unpublished results;Google Scholar
[3] Oki, F., Ogawa, Y., Fujiki, Y., Japan.J.Appl.Phys. 8 (1969), 1056;Google Scholar
[4] Herd, S., Chaudhari, P., Brodsky, M.H., J.Non-Cryst.Sol. 7 (1972), 309;Google Scholar
[5] Hong, S.Q., Comrie, C.M., Russell, S.W., Mayer, J.W., J.Appl.Phys. 70 (1991), 3655;Google Scholar
[6] Krusin-Elbaum, L., Aboelfotoh, M.O., Appl.Phys.Lett. 58 (1991), 1341;Google Scholar
[7] Chang, C.A., Surface Sci. 245 (1991), 12;Google Scholar
[8] Becht, J.G.M., Loo, F.J.J. van, Metselaar, R., React.Solids 6 (1988);Google Scholar
[9] Kotval, P.S., Honeycombe, R.W.K., Acta Met. 16 (1968), 597;Google Scholar
[10] Fischer, A.G., Tizabi, D.J., Blanke, H., IEEE Electron Device Lett. 4 (1983), 447;Google Scholar
[11] Doutreloigne, J., Baets, J. de, Rycke, I. de, Smet, H. do, Calster, A. van, Vanfleteren, J., Thin Solid Films 189 (1990), 235;Google Scholar
[12] Köster, U., Kristallisation und Entmischung amorpher Germanium-Legierungen, Forschungsbericht des Landes Nordrhein-Westfalen Nr. 2604, Westdeutscher Verlag, Opladen 1976 Google Scholar