Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-08T10:34:14.747Z Has data issue: false hasContentIssue false

Cyano-Derivatives Of Poly (P-Phenylene Vinylene) For Use In Thin-Film Light-Emitting Diodes

Published online by Cambridge University Press:  16 February 2011

N. C. Greenham
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK
F. Cacialli
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK
D. D. C. Bradley
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK
R. H. Friend
Affiliation:
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, UK
S. C. Moratti
Affiliation:
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
A. B. Holmes
Affiliation:
University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK
Get access

Abstract

Conjugated polymers can be use to provide charge transport and emissive layers in a range of thin-film electroluminescent devices. Electroluminescence results from radiative decay of excitons which are formed by electron-hole capture. Device efficiency is particularly sensitive to the balancing of electron and hole currents injected from opposite electrodes, and this is best achieved at the heterojunction between two polymer layers with different electronegativities. We report here the properties of a conjugated polymer with high electron affinity, a cyano derivative of poly (p-phenylene vinylene), PPV. This polymer shows an electron affinity considerably higher than than that of PPV, and is therefore suitable for use as the electron transporting layer in heterostructure LEDs. It shows efficient photoluminescence due to radiative decay of singlet excitons, and photoinduced absorption in the IR, similar to that in PPV, which we attribute to excitations of photogenerated triplet excitons. EL devices formed with a heterojunction between PPV and this cyano derivative of PPV, with indium/tin oxide as positive electrode, PPV, cyano-PPV layers and an aluminium negative electrode, show internal quantum efficiencies as high as 4%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Heeger, A. J., Kivelson, S., Schrieffer, J. R. and Su, W.-P., Rev. Mod. Phys. 60, 781 (1988).Google Scholar
2. Friend, R. H., Bradley, D. D. C. and Townsend, P. D., J. Phys. D (Applied Physics) 20, 1367 (1987).Google Scholar
3. Colaneri, N. F., Bradley, D. D. C., Friend, R. H., Burn, P. L., Holmes, A. B. and Spangler, C. W., Phys. Rev. B 42, 11671 (1990).Google Scholar
4. Rühe, J., Colaneri, N. F., Bradley, D. D. C., Friend, R. H. and Wegner, G., J. Phys.: Condensed Matter 2, 5465 (1990).Google Scholar
5. Burroughes, J. H., Jones, C. A. and Friend, R. H., Nature 335, 137 (1988).CrossRefGoogle Scholar
6. Assadi, A., Svensson, C., Willander, M. and Inganäs, O., Appl. Phys. Lett. 53, 195 (1988).CrossRefGoogle Scholar
7. Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Friend, R. H., Burn, P. L. and Holmes, A. B., Nature 347, 539 (1990).CrossRefGoogle Scholar
8. Braun, D. and Heeger, A. J., Appl. Phys. Lett. 58, 1982 (1991) erratum: (1991) 59, 36.Google Scholar
9. Gustafsson, G., Cao, Y., Treacy, G. M., Klavetter, F., Colaneri, N. and Heeger, A. J., Nature 357, 477 (1992).Google Scholar
10. Ohmori, Y., Uchida, M., Muro, K. and Yoshino, K., Solid State Commun. 80, 605 (1991).Google Scholar
11. Ohmori, Y., Uchida, M., Muro, K. and Yoshino, K., Jap. J. Appl. Phys. Part 2 Lett. 30, (1991).Google Scholar
12. Grem, G., Leditzky, G., Ullrich, B. and Leising, G., Advanced Materials 4, 36 (1992).CrossRefGoogle Scholar
13. Burn, P. L., Holmes, A. B., Kraft, A., Bradley, D. D. C., Brown, A. R., Friend, R. H. and Gymer, R. W., Nature 356, 47 (1992).Google Scholar
14. Brown, A. R., Burroughes, J. H., Greenham, N., Friend, R. H., Bradley, D. D. C., Burn, P. L., Kraft, A. and Holmes, A. B., Appl. Phys. Lett. 61, 2793 (1992).CrossRefGoogle Scholar
15. Parker, I. D., J. Appl. Phys. (submitted).Google Scholar
16. Hsieh, B. R., Antoniadis, H., Abkowitz, M. A. and Stolka, M., Polym. Preprints 33, 414 (1992).Google Scholar
17. Brown, A. R., Greenham, N. C., Burroughes, J. H., Bradley, D. D. C., Friend, R. H., Burn, P. L., Kraft, A. and Holmes, A. B., Chenu Phys. Lett. 200, 46 (1992).CrossRefGoogle Scholar
18. Marks, R. N., Halls, J. J. M., Bradley, D. D. C., Friend, R. H. and Holmes, A. B., (preprint).Google Scholar
19. Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H. and Holmes, A. B., Nature 365, 628 (1993).CrossRefGoogle Scholar
20. Moratti, S. C., Bradley, D. D. C., Friend, R. H., Greenham, N. C. and Holmes, A. B., Materials Research Society Fall Meeting, Boston, November/December 1993, this Symposium. Google Scholar
21. Tang, C.W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
22. Tang, C.W., VanSlyke, S. A. and Chen, C. H., J. Appl. Phys. 65, 3610 (1989).CrossRefGoogle Scholar
23. Adachi, C., Tokito, S., Tsutsui, T. and Saito, S., Jap. J. Appl. Phys. 27, 713 (1988).Google Scholar
24. Adachi, C., Tokito, S., Tsutsui, T. and Saito, S., Jap. J. Appl. Phys. 27, 269 (1988).Google Scholar
25. Adachi, C., Tsutsui, T. and Saito, S., Appl. Phys. Lett. 55, 1489 (1989).Google Scholar
26. Adachi, C., Tsutsui, T. and Saito, S., Appl. Phys. Lett. 56, 799 (1990).CrossRefGoogle Scholar
27. Adachi, C., Tsutsui, T. and Saito, S., Appl. Phys. Lett. 57, 531 (1990).Google Scholar
28. Burn, P., Holmes, A. B., Kraft, A., Brown, A. R., Bradley, D. D. C. and Friend, R. H., Mat. Res. Soc. Proc., Pittsburgh, PA 247, 647 (1992).Google Scholar
29. Doi, S., Kuwabara, M., Noguchi, T. and Ohnishi, T., Synthetic Metals 55–57, 4174 (1993).Google Scholar
30. Woo, H. S., Graham, S. C., Bradley, D. D. C., Friend, R. H., Burn, P. L. and Holmes, A. B., Phys. Rev. B 46, 7379 (1992).Google Scholar
31. Lhost, O. and Brédas, J. L., J. Chem. Phys. 96, 5279 (1992).Google Scholar
32. Pichler, K., Halliday, D. A., Bradley, D. D. C., Burn, P. L., Friend, R. H. and Holmes, A. B., J. Phys. Condensed Matter 5, 7155 (1993).Google Scholar
33. Samuel, I. D. W., Crystall, B., Rumbles, G., Burn, P. L., Holmes, A. B. and Friend, R. H., Chem. Phys. Lett. 213, 472 (1993).Google Scholar
34. Rumbles, G., Collison, C. and Crystall, B., (private communication).Google Scholar
35. Wei, X., Hess, B. C., Vardeny, Z. V. and Wudl, F., Phys. Rev. Lett. 68, 666 (1992).Google Scholar
36. Smilowitz, L. and Heeger, A. J., Synthetic Metals 48, 193 (1992).Google Scholar
37. Burn, P. L., Bradley, D. D. C., Friend, R. H., Halliday, D. A., Holmes, A. B., Jackson, R. W. and Kraft, A. M., J. Chem. Soc. Perkin Trans I, 3225 (1992).CrossRefGoogle Scholar
38. Brown, A. R., Greenham, N. C., Gymer, R. W., Pichler, K., Bradley, D. D. C., Friend, R. H., Burn, P. L., Kraft, A. and Holmes, A. B., in NATO ASI Series E: Intrinsically Conducting Polymers: An EMerging Technology Aldissi, M., Ed. (Kluwer, Dordrecht, 1993), vol. 246, pp. 87.Google Scholar
39. Helbig, M. and Hörhold, H. H., Makromol. Chem. 194, 1607 (1993).Google Scholar