Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-03T06:05:56.263Z Has data issue: false hasContentIssue false

Direct Synthesis of L10-Phase Nanostructured CoPt Using Dense Plasma Focus Device Operating in Non-optimized Focus Mode

Published online by Cambridge University Press:  01 February 2011

Zhenying Pan
Affiliation:
pzhying@gmail.compzhying@qq.com
Rajdeep Singh Rawat
Affiliation:
rajdeep.rawat@nie.edu.sg, National Institute of Education, Natural Science and Science Education, 1 Nanyang Walk, Singapore, Singapore, 637616, Singapore
Jiaji Lin
Affiliation:
jiaji.lin@nus.edu.sg, Solar Energy Research Institute of Singapore, Singapore, Singapore
Shumaila Karamat
Affiliation:
shumailakaramat@gmail.com, National Institute of Education, Natural Science and Science Education, 1 Nanyang Walk, Singapore, Singapore, 637616, Singapore
Paul Choon Keat Lee
Affiliation:
paul.lee@nie.edu.sg, National Institute of Education, Natural Science and Science Education, 1 Nanyang Walk, Singapore, Singapore, 637616, Singapore
Stuart Victor Springham
Affiliation:
stuart.springham@nie.edu.sg, National Institute of Education, Natural Science and Science Education, 1 Nanyang Walk, Singapore, Singapore, 637616, Singapore
Augustine Tuck Lee Tan
Affiliation:
augustine.tan@nie.edu.sg, National Institute of Education, Natural Science and Science Education, 1 Nanyang Walk, Singapore, Singapore, 637616, Singapore
Get access

Abstract

A direct synthesis of (001) oriented nanostructured CoPt thin films has been successfully achieved using a 880 J pulsed Dense Plasma Focus (DPF) device operating in a non-optimized focus mode with a low charging voltage of about 8 kV. The (001) oriented fct structured L10 phase nanostructured CoPt thin films have been synthesized directly in as-deposited sample, as verified by XRD results, without any post deposition annealing. The SEM imaging results show that nanostructured CoPt were achieved in non-optimized focus mode with agglomerate/particle size ranging from 10 to 55 nm. Furthermore, the VSM analysis shows that the as-deposited samples in non-optimized focus mode have higher coercivity (due to direct L10 phase) as compared the annealed sample and the as-deposited sample of optimized focus mode operation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Weller, D., Moser, A., Folks, L., Best, M. E., Lee, W., Toney, M. F., Schwickert, M., Thiele, J. U., and Doerner, M. F., IEEE Trans. Magn. 36, 1015 (2000).Google Scholar
2 Sun, S. H., Murray, C. B., Weller, D., Folks, L., and Moser, A., Sci 287, 19891992 (2000).Google Scholar
3 Sun, X. C., Jia, Z. Y., Huang, Y. H., Harrell, J. W., Nikles, D. E., Sun, K., and Wang, L. M., J. Appl. Phys. 95, 67476749 (2004).Google Scholar
4 Agostinellia, E., Lauretia, S., Varvaroa, G., Generosib, A., Pacib, B., Rossi-Albertinib, V., Scaviaa, G., and Testaa, A. M., Mater. Sci. Eng., C 27, 14661469 (2006).Google Scholar
5 Hu, J.-P., and Lin, P., IEEE Trans. Magn. 32, 40964098 (1996).Google Scholar
6 Grance, W., Ulhaq-Bouillet, C., Maret, M., and Thibault, J., Acta Mater. 49, 14391444 (2001).Google Scholar
7 Rawat, R. S., Chew, W. M., Lee, P., White, T., and Lee, S., Surf. Coat. Tech. 173, 276 (2003).Google Scholar
8 Soh, L. Y., Lee, P., Shuyan, X., Lee, S., and Rawat, R. S., IEEE Trans Plasma Sci 32, 448455 (2004).Google Scholar
9 Rawat, R. S., Zhang, T., Gan, K. S. T., Lee, P., and Ramanujan, R. V., Appl. Surf. Sci. 253, 16111615 (2006).Google Scholar
10 Zhang, T., Thomas Gan, K. S., Lee, P., Ramanujan, R. V., and Rawat, R. S., J. Phys. D: Appl. Phys. 39, 22122219 (2006).Google Scholar
11 Rawat, R. S., Arun, P., Vedeshwar, A. G., Lee, P., and Lee, S., J. Appl. Phys. 95, 77257730 (2004).Google Scholar
12 Lin, J. J., Roshan, M. V., Pan, Z. Y., Verma, R., Lee, P., Springham, S. V., Tan, T. L., and Rawat, R. S., J. Phys. D: Appl. Phys. 41, 135213 (2008).Google Scholar
13 Pan, Z. Y., Lin, J. J., Zhang, T., Karamat, S. , Tan, T. L., Lee, P., Springham, S. V., Ramanujan, R. V., and Rawat, R. S., Thin Solid Films 517, 27532757 (2009).Google Scholar
14 Pan, Z. Y., Rawat, R. S., Lin, J. J., Zhang, T., Lee, P., Tan, T. L., and Springham, S. V., Appl Phys a-Mater 96, 10271033 (2009).Google Scholar
15 Platt, C. L., Wierman, K. W., Svedberg, E. B., Veerdonk, R. v. d., Howard, J. K., Roy, A. G., and Laughlin, D. E., J. Appl. Phys. 92, 61046109 (2002).Google Scholar
16 Lairson, B. M., Visokay, M. R., Sinclair, R., and Clemens, B. M., Appl. Phys. Lett. 62, 639 (1993).Google Scholar
17 Zeng, H., Yan, M. L., Powers, N., and Sellmyer, D. J., Appl. Phys. Lett. 80, 23502352 (2002).Google Scholar
18 Chen, C., Kitakami, O., Okamoto, S., and Shimada, Y., Appl. Phys. Lett. 76, 32183220 (2000).Google Scholar
19 Pan, Z. Y., Rawat, R. S., Roshan, M. V., Lin, J. J., Verma, R., Lee, P., Tan, T. L., and Springham, S. V., J. Phys. D: Appl. Phys. 42, 175001 (2009).Google Scholar