Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-11T22:02:44.218Z Has data issue: false hasContentIssue false

Effects of Concurrent Co or Ti Silicidation on Transient Diffusion and End-of-Range Damage in Phosphorus Implanted Silicon

Published online by Cambridge University Press:  03 September 2012

J.W. Honeycutt
Affiliation:
North Carolina State University, Dept. of Materials Science and Engineering, Raleigh, NC 27695
J. Ravi
Affiliation:
North Carolina State University, Dept. of Materials Science and Engineering, Raleigh, NC 27695
G. A. Rozgonyi
Affiliation:
North Carolina State University, Dept. of Materials Science and Engineering, Raleigh, NC 27695
Get access

Abstract

The effects of Ti and Co silicidation on P+ ion implantation damage in Si have been investigated. After silicidation of unannealed 40 keV, 2×1015 cm-2 P+ implanted junctions by rapid thermal annealing at 900°C for 10–300 seconds, secondary ion mass spectrometry depth profiles of phosphorus in suicided and non-silicided junctions were compared. While non-silicided and TiSi2 suicided junctions exhibited equal amounts of transient enhanced diffusion behavior, the junction depths under COSi2 were significantly shallower. End-of-range interstitial dislocation loops in the same suicided and non-silicided junctions were studied by planview transmission electron microscopy. The loops were found to be stable after 900°C, 5 minute annealing in non-silicided material, and their formation was only slightly effected by TiSi2 or COSi2 silicidation. However, enhanced dissolution of the loops was observed under both TiSi2 and COSi2, with essentially complete removal of the defects under COSi2 after 5 minutes at 900°C. The observed diffusion and defect behavior strongly suggest that implantation damage induced excess interstitial concentrations are significantly reduced by the formation and presence of COSi2, and to a lesser extent by TiSi2. The observed time-dependent defect removal under the suicide films suggests that vacancy injection and/or interstitial absorption by the suicide film continues long after the suicide chemical reaction is complete.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Solmi, S., Angelucci, R., Cembali, F., Servidori, M., and Anderle, M., Appl. Phys. Lett. 51, 331 (1987).Google Scholar
[2] Mikaye, M. and Aoyama, S., J. Appl. Phys. 63, 1754 (1988).Google Scholar
[3] Kim, Y., Massoud, H. Z., and Fair, R. B., J. Elec. Mat. 18, 143 (1989).CrossRefGoogle Scholar
[4] Giles, M. D., J. Electrochem. Soc. 138, 1160 (1991).Google Scholar
[5] Fahey, P. M., Griffin, P. B., and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
[6] Brotherton, S. D., Gowers, J. P., Young, N. D., Clegg, J. B., and Ayres, J. R., J. Appl. Phys. 60, 3567 (1986).Google Scholar
[7] Wen, D. S., Smith, P., Osburn, C. M., and Rozgonyi, G. A., J. Electrochem. Soc. 136, 466 (1989).Google Scholar
[8] Wen, D. S., Smith, P. L., Osburn, C. M., and Rozgonyi, G. A., Appl. Phys. Lett. 51, 1182 (1987).Google Scholar
[9] Ohdomari, I., Takano, K., Chikyow, T., Kawarada, H., Nakanishi, J., and Ueno, T., MRS Symp. Proc. 54, 63 (1986).Google Scholar
[10] Maex, K., DeKeersmaecker, R., Claeys, C., Vanhellemont, J., and Alkemade, P. F. A., in Semiconductor Silicon 1986, Huff, H., Abe, T., and Kolbesen, B. (eds.), (The Electrochemical Society, Penninglon, NJ, 1986), p. 346.Google Scholar
[11] Lur, W., Cheng, J. Y., Chu, C. H., Wang, M. H., Lee, T. C, Wann, Y. J., Chao, W. Y., and Chen, L. J., Nucl. Instr. Meth. B39, 297 (1989).Google Scholar
[12] Osburn, C. M., Brat, T., Sharma, D., Griffis, D., Corcoran, S., Lin, S., Chu, W.-K., and Parikh, N., J. Electrochem. Soc. 6, 1490 (1988).Google Scholar
[13] Morgan, A. E., Broadbent, E. K., Delfino, M., Coulman, B., and Sadana, D. K., J. Electrochem Soc. 134, 925 (1987).Google Scholar
[14] Raaijmakers, I. J. M. M., van Uzendoorn, L. J., Theunissen, A. M. L., and Kim, K. B., MRS Symp. Proc, 146, 267 (1989).Google Scholar
[15] Corcoran, S. F., Osburn, C. M., Parikh, N., Linton, R. W., and Griffis, D. P., J. Vac. Sci. Tech. A7, 3065 (1989).Google Scholar
[16] Jones, K. S., Prussin, S., and Weber, E. R., J. Appl. Phys. 62, 4114 (1987).Google Scholar
[17] Fahey, P., Dutton, R. W., and Hu, S. M., Appl. Phys. Lett. 44, 777 (1984).CrossRefGoogle Scholar
[18] Fair, R. B., IEEE Trans. Elec. Dev. ED-35, 285 (1988).Google Scholar
[19] Cspregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4234 (1977).Google Scholar
[20] Van den Hove, L., Wolters, R., Maex, K., DeKeersmaecker, R., and Declerck, G., J. Vac. Sci. Tech. B4, 1358 (1986).Google Scholar
[21] Pico, C. A. and Lagally, M. G., J. Appl. Phys. 64, 4957 (1988).Google Scholar
[22] Ahn, S. T., Kennel, H. W., Plummer, J. D., and Tiller, W. A., J. Appl. Phys. 64, 4914 (1988).Google Scholar
[23] Moynagh, P. B., Brown, A. A., and Rosser, P. J., J. Phys. C4, 187 (1988).Google Scholar
[24] Jiang, H., Osburn, C. M., Smith, P., Xiao, Z. -G., Griffis, D., McGuire, G., and Rozgonyi, G. A., J. Electrochem. Soc. 139, 196 (1992).Google Scholar
[25] Honeycutt, J. W. and Rozgonyi, G. A., to be submitted to J. Appl. Phys.Google Scholar
[26] Van den Hove, L., Ph. D. Thesis, Katholieke Universiteit Leuven, Belgium (1988).Google Scholar
[27] Narayan, J. and Jagannadham, K., J. Appl. Phys. 62, 1694 (1987).Google Scholar
[28] Fahey, P. and Dutton, R. W., Appl. Phys. Lett. 52, 1092 (1988).Google Scholar
[29] Xiao, Z. G., Rozgonyi, G. A., Canovai, C. A., and Osburn, C. M., MRS Symp. Proc. 202, 101 (1991).Google Scholar
[30] Nolan, T., Beyers, R., and Sinclair, R., MRS Symp. Proc. 202, 95 (1991).Google Scholar
[31] Schowengerdt, F. D., Lin, T. L., Fathauer, R. W., and Grunthaner, P. J., Appl. Phys. Lett. 54, 1314 (1989).Google Scholar