Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-13T14:02:56.303Z Has data issue: false hasContentIssue false

Elastomeric Conductive Ipn From Polyaniline And Fullerene-Based Networks

Published online by Cambridge University Press:  10 February 2011

Lee Y. Wang
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
Long Y. Chiang
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
C. S. Kuo
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
J. G. Lin
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
C. Y. Huang
Affiliation:
Center for Condensed Matter Sciences, National Taiwan University, Taipei, Taiwan
Get access

Abstract

Polyhydroxylated fullerenes were utilized as an efficient hyper cross-linking agent in the synthesis of polyurethane networks. The resultant elastomers exhibited greatly enhanced thermal stability in comparison with those of the corresponding linear polyurethane and analogous elastomers, which were cross-linked by 1,1,1- tris(hydroxymethyl)ethane. A synthetic method leading to the preparation of a thin layer of conductive polyaniline/polyurethane IPN at the near surface of a fullerenol- based elastomeric substrate was demonstrated, using aqueous ammonium persulfate as an oxidizing agent in the presence of HCI. This new material exhibits a conductivity of 2.0 S/cm at ambient temperatures with the retention of most bulk properties of the parent elastomer, such as elongation and tensile strength at break.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. MacDiarmid, A. G., Chiang, J. C., Halpem, M., Mu, W. L., Somasiri, N. L. D., Wu, W. and Yaniger, S. I., Mol. Cryst. Liq. Cryst. 121, 173 (1985).Google Scholar
2. Cao, Y., Smith, P. and Heeger, A. J., Synth. Met. 32, 263 (1989).Google Scholar
3. Wang, Y. Z., Joo, J., Hsu, C. H. and Epstein, A. J., Synth. Met. 68,207 (1995).Google Scholar
4. Osaka, T., Naoi, K. and Hirabayashi, T., J. Electrochem. Soc. 134, 2645 (1990).Google Scholar
5. Katani, A., Yano, J. and Sasaki, K. J., J. Electroanal. Chem. 209, 227 (1986).Google Scholar
6. Jelle, B. P., Hagen, G., Sunde, S. and Odegard, R., Synth. Met. 54, 315 (1993).Google Scholar
7. Ohtani, A., Abe, M., Ezoe, M., Doi, T., Miyata, T. and Miyake, A., Synth. Met. 55–57, 3696 (1993).Google Scholar
8. Anderson, M. R., Mattes, B. R., Reiss, H. and Kaner, R. B., Science 252, 1412 (1991).Google Scholar
9. Bodalia, R., Stem, R., Batich, C. and Duran, R., J. Polym. Sci. Polym. Chem. 32, 2123 (1993).Google Scholar
10. Wei, Y., Hariharan, R. and Patel, S. A., Macromolecules 23, 758 (1990).Google Scholar
11. Cao, Y., Smith, P. and Heeger, A. J., Synth.Met. 48, 91 (1992).Google Scholar
12. Heeger, A. J., Synth. Met. 55–57, 3471 (1993).Google Scholar
13. Kulkami, V. G., Campbell, J. C. and Mathew, W. R., Synth. Met. 55–57, 3780 (1993).Google Scholar
14. Yang, S. and Ruckenstein, E., Synth. Met. 59, 1 (1993).Google Scholar
15. Wessling, B., Adv. Mater. 3, 507 (1991).Google Scholar
16. Chiang, L. Y., Swirczewski, J. W., Hsu, C. S., Chowdhury, S. K., Cameron, S. and Creegan, K., J. Chem. Soc. Chem. Commun. 1791 (1992).Google Scholar
17. Chiang, L. Y., Upasani, R. B. and Swirczewski, J. W., J. Am. Chem. Soc. 114, 10154 (1992).Google Scholar
18. Chiang, L. Y., Wang, L. Y., Swirczewski, J. W., Soled, S. and Cameron, S., J. Org. Chem. 59, 3960 (1994).Google Scholar
19. Chiang, L. Y., Wang, L. Y., Tseng, S. M., Wu, J. S. and Hsieh, K. H., J. Chem. Soc. Chem. Commun. 2675 (1994).Google Scholar
20. Wang, L. Y. and Chiang, L. Y., Mat. Res. Soc. Symp. Proc. 359, 341 (1995).Google Scholar