Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-10T16:07:41.738Z Has data issue: false hasContentIssue false

Electrical Characterization of Proton Irradiated n-Type ZnO

Published online by Cambridge University Press:  01 February 2011

F Danie Auret
Affiliation:
danie.auret@up.ac.za, University of Pretoria, Physics, NW1 Building, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa, +27 - 12 - 420 2684, +27 - 12 - 362 5288
Michael Hayes
Affiliation:
mhayes@postino.up.ac.za, University of Pretoria, Physics Department, Pretoria, 0002, South Africa
Jackie Nel
Affiliation:
jackie.nel@up.ac.za, University of Pretoria, Physics Department, Pretoria, 0002, South Africa
Walter Meyer
Affiliation:
w@up.ac.za, University of Pretoria, Physics Department, Pretoria, 0002, South Africa
Pieter Johan Janse van Rensburg
Affiliation:
jvr@up.ac.za, University of Pretoria, Physics Department, Pretoria, 0002, South Africa
Werner Wesch
Affiliation:
werner@up.ac.za, Friedrich-Schiller-Universität, Institut für Festkörperphysik, Jena, 0002, Germany
E Wendler
Affiliation:
E@up.ac.za, Friedrich-Schiller-Universität, Institut für Festkörperphysik, Jena, 0002, Germany
Get access

Abstract

Ru Schottky barrier diodes (SBD's) were fabricated on the Zn face of n-type ZnO. These diodes were irradiated with 1.8 MeV at fluences ranging from 1 ´ 1013 cm-2 to 2.4 ´ 1014 cm-2. Capacitance and current (I) deep level transient spectroscopy (DLTS) was used to characterise the irradiation induced defects. Capacitance DLTS showed that proton irradiation introduced a level, Ep1, at 0.52 eV below the conduction band at an introduction rate of 13±1 cm-1. A defect with a very similar DLTS signature was also present in low concentrations in unirradiated ZnO. I-DLTS revealed that this proton irradiation introduced a defect with an energy level at (0.036± 0.004) eV below the conduction band. This defect is clearly distinguishable from a defect with a level at (0.033± 0.004) eV below the conduction band that was present in the unirradiated sample. It is speculated that these shallow level defects are related to zinc interstitials or complexes involving them.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Look, D.C., Mater. Sci. and Eng. B 80, 383 (2001).Google Scholar
2 Kligshirn, C., Phys. Status Solidi b 71, 547 (1975).Google Scholar
3 Aoki, T., Hatanaka, Y. and Look, D.C., Appl. Phys. Lett. 76, 3257 (2000).Google Scholar
4 Lang, D.V., J. Appl. Phys. 45, 3023 (1974).Google Scholar
5 Vincent, G., Bois, D. and Pinard, P., J. Appl. Phys. 46, 5173 (1975).Google Scholar
6 Nel, J.M., Auret, F.D., Wu, L., Legodi, M.J., Meyer, W.E. and Hayes, M., Sensors and Actuators B 100, 270 (2004).Google Scholar
7 Rohatgi, A. and Pang, S. K., Gupta, T. K. and Straub, W. D., J. Appl. Phys. 63, 5375 (1988).Google Scholar
8 Look, D.C., Reynolds, D.C., Hemsky, J.W., Jones, R.L. and Sizelove, J.R., Appl. Phys. Lett. 75, 811 (1999).Google Scholar
9 Fang, Z-Q, Look, D.C., Kim, W., Fan, Z., Botchkarev, A. and Morkoc, H., Appl. Phys. Lett. 72, 2277 (1998).Google Scholar
10 Goodman, S.A., Auret, F.D., Legodi, M.J., Gibart, P. and Beaumont, B., Appl. Phys. Lett,. (2000).Google Scholar
11 Hallen, A., Henry, A., Pellegrino, P., Svensson, B.G. and Åberg, D., Materials Science and Engineering B61–62, 378 (1999).Google Scholar
12 Auret, F.D., Goodman, S.A., Koschnick, F.K., Spaeth, J-M, Beaumont, B. and Gibart, P., Appl. Phys. Lett. 74, 407 (1999).Google Scholar
13 Auret, F.D., Goodman, S.A., Koschnick, F.K., Spaeth, J-M, Beaumont, B. and Gibart, P., Appl. Phys. Lett. 73, 3745 (1998).Google Scholar
14 Auret, F.D., Goodman, S.A., Hayes, M., Legodi, M.J., van Laarhoven, H.A. and Look, D.C., J. Phys.: Condens. Matter 13, 8989 (2001).Google Scholar
15 Auret, F.D., Goodman, S.A., Hayes, M., Legodi, M.J., van Laarhoven, H. A. and Look, D.C., Appl. Phys. Lett. 79, 3074 (2001).Google Scholar
16 Hayes, M., Auret, F.D., Janse van Rensburg, P.J., Nel, J.M., Wesch, W., Wendler, E., Submitted to Phys. Status Solidi b, (2006).Google Scholar
17 Van de Walle, C.G., Phys. Rev. Lett. 85, 1012 (2000).Google Scholar