Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-08T06:15:15.212Z Has data issue: false hasContentIssue false

Electrical Properties of Low-Temperature Processed PZT Thin Films with Preferred Orientations

Published online by Cambridge University Press:  10 February 2011

H. Suzuki
Affiliation:
Shizuoka University, Dept. of Materials Science and Tech., Hamamatsu, 432–8561 JAPAN, hisao. suzuki@eng.shizuoka.ac.ip
Y. Kondo
Affiliation:
Shizuoka University, Dept. of Materials Science and Tech., Hamamatsu, 432–8561 JAPAN, hisao. suzuki@eng.shizuoka.ac.ip
S. Kaneko
Affiliation:
Shizuoka University, Dept. of Materials Science and Tech., Hamamatsu, 432–8561 JAPAN, hisao. suzuki@eng.shizuoka.ac.ip
T. Hayashi
Affiliation:
Department of Materials Science and Technology, Shonan Institute of Technology, 1–1–25 Tsujido-Nishikaigan Fujisawa, Kanagawa 251, JAPAN
Get access

Abstract

Ferroelectric Pb(Zr0.53Ti0.47)O3 (PZT) thin films with preferred orientations were successfully deposited on the Pt/Ti/SiO2/Si wafer at low temperature of 525°C by the chemical solution deposition from molecular-designed precusor solution with 20 mol % excess lead than a stoichiometric composition. The composition of the resultant PZT thin films showed slightly lead excess than a stoichiometric composition. In addition, orientation of the resultant PZT thin films could be controlled by changing the pre-annealing temperature or insertion of thin PbO layer, which affected the interfacial state between Pt electrode and PZT thin films. The electrical properties of the resultant PZT thin films were also affected by the orientation of the resultant films. As a result, orientation of the low-temperature processed PZT thin films had large effect on the electrical properties of the resultant films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J. F., Kammerdiner, L., Parris, M., Traynor, S., Ottenbacher, V., Shawabkeh, A. and Oliver, W. F., J.Appl.Phys. 64, 787 (1989)Google Scholar
2. Varnado, S. G. and Smith, W. E., IEEE J.Quantum Electron, 8, 88 (1972)Google Scholar
3. Castellane, R. N. and Feinstein, L. G., J.Appl.Physs. 50, 4406 (1979)Google Scholar
4. Brooks, K. G., Reaney, I. M., Klissurska, R., Huang, Y., Bursill, L. and Setter, N., J. Mater. Res., 9, 2540 (1993)Google Scholar
5. Reaney, I. M., Brooks, K. G., Klissurska, R., Pawlaczyk, C. and Setter, N., J. Am. Ceram. Soc., 77, 1209 (1994)Google Scholar
6. Chen, S. Y. and Chen, I. W., J. Am. Ceram. Soc., 77, 2332 (1994)Google Scholar
7. Tani, T., Xu, Z. and Payne, D. A., Mat. Res. Soc. Symp. Proc., 310, 269 (1993)Google Scholar
8. Liu, Y. and Phule, P. P., J. Am. Ceram. Soc., 79, 495 (1996)Google Scholar
9. Aoki, K., Fukuda, Y., Numata, K. and Nishimura, A., Jpn. J. Appl. Phys., 33, 5155 (1994)Google Scholar
10. Suzuki, H., Othman, M. B., Murakami, K., Kaneko, S. and Hayashi, T., Jpn. J. Appl. Phys., 35, 4896 (1996)Google Scholar
11. Suzuki, H., Kaneko, S., Murakami, K. and Hayashi, T., Jpn. J. Appl. Phys., 36, 5803 (1997)Google Scholar
12. Takusagawa, T., Yamada, N., Kato, T., Hattori, H. and Matsui, T., Jpn. J. Appl. Phys., 33, 5151 (1994)Google Scholar
13. Yi, G., Wu, Z. and Sayer, M., J. Appl. Phys., 64, 2717 (1988)Google Scholar
14. Suzuki, H., Kondo, Y., Kaneko, S. and Hayashi, T., Trans. Mater. Res. Soc. Jpn., 24, 3942 (1999) ACKNOWLEDGEMENT A part of this work was supported by a Grant-in-Aid for Scientific Research (B), The Ministry of Education, Science, Sports and Culture, JapanGoogle Scholar