Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-04T09:09:17.680Z Has data issue: false hasContentIssue false

Electromigration Characterization for Multilevel Metallizations using Textured AlCu

Published online by Cambridge University Press:  15 February 2011

Larry M. Ting
Affiliation:
Semiconductor and Process Design Center, Texas Instruments, Dallas, TX 75265
Qi-Zhong Hong
Affiliation:
Semiconductor and Process Design Center, Texas Instruments, Dallas, TX 75265
Get access

Abstract

Electromigration lifetime dependence on crystallographic texture for AlCu interconnects is determined. It is found that enhancement of AlCu texture at <111> orientation improves EM endurance. But this beneficial effect is limited after a certain level of texture enhancement is reached. The effect of lifetime improvement is proved to result from a decrease in atomic diffusivity. Saturation of the lifetime improvement effect for highly textured AlCu indicates a change in the main diffusion mechanism for electromigration, possibly from the regular grain boundary diffusion to diffusion through edge dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kang, H., Asano, I., Ryu, C., and Wong, S., VMIC, p. 223, 1993.Google Scholar
2. Dixit, G., Paranjpe, A., Hong, Q., Ting, L., Luttermer, L., and Havemann, R., IEDM, p. 1001, 1995.Google Scholar
3. Attardo, M. and Rosenberg, R., J. Appl. Phys., 41(6), p. 2381, 1970.Google Scholar
4. Vaidya, S. and Sinha, A. K., Thin Solid Films, 75, p. 253, 1981.Google Scholar
5. Kawasaki, H., Fu, K., Jawarani, D., Olowolafe, J., Boeck, B., Fernandes, M., Kaushik, V., and Pintchovski, F., VMIC, p. 379, 1992.Google Scholar
6. Fu, K. Y., Kawasaki, H., Olowolafe, J. O. and Pyle, R. E., VMIC, p. 407, 1992.Google Scholar
7. Rodbell, K. P., Colgan, E. G., and Hu, C. K., Mat. Res. Soc. Symp. Proc. 337, p. 59, 1994.Google Scholar
8. Onada, H., Kageyama, M., and Hashimoto, K., J. Appl. Phys., 77(2), 885892, 1995.Google Scholar
9. Toyoda, H., Kawanoue, T., Hasunuma, M., Kaneko, H., and Miyauchi, M., IRPS, p. 178, 1994.Google Scholar
10. Knorr, D. B. and Rodbell, K. P., SPIE, 1805, p. 210, 1992.Google Scholar
11. Schafft, H., Trans. on Eletron Devices, 34, p. 664, 1987.Google Scholar
12. Ting, L. and Graas, C., IRPS, p. 326, 1995.Google Scholar
13. Hu, C., Small, M., and Ho, P., J. Appl. Phys., 74(2), p. 969, 1993.Google Scholar
14. Wolf, D., J. Mater. Res. 5, p. 1708, 1990.Google Scholar
15. Turnbull, D. and Hoffman, R., Acta Met., 2, p. 419, 1954.Google Scholar
16. Hu, C. and Small, M., VMIC, p. 265, 1993.Google Scholar