Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-02T21:54:28.650Z Has data issue: false hasContentIssue false

Energetics of Epitaxial Monolayers Deposited on a (111) Surface of an FCC Crystal: Application to a Cu Monolayer on Au(111)

Published online by Cambridge University Press:  10 February 2011

F. R. Zypman
Affiliation:
Department of Physics and Electronics, University of Puerto Rico, Humacao, PR 00791–4300.
L. F. Fonseca
Affiliation:
Department of Physics, University of Puerto Rico, P.O. Box 23343, San Juan, PR 00931–3343.
L. Blum
Affiliation:
Department of Physics, University of Puerto Rico, P.O. Box 23343, San Juan, PR 00931–3343.
Get access

Abstract

We study a system in which a monolayer of atoms of one kind are deposited epitaxialy onto a (111) surface of an FCC crystal using the Tight Binding approximation. First, we obtain an analytical expression for the energy spectrum of the system. This turns out to be an interesting result from the mathematical standpoint due to its simplicity, and to the fact that no artificial boundary conditions (like periodic or vanishing) were imposed on the wave functions. All the spectral information is shown to be contained in the roots of a quadratic polynomial. Then, for Cu on Au, we study the density of states and wave function decay out from the outer layer. This is done at zero and finite voltage applied between an electrode and bulk Gold, immersed in an electrolyte. This problem is of interest in electrochemistry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kolb, D.M., Al Jaaf-Golze, K., and Zei, M.S., DECHEMA Monographien, 12, 53, Verlag Chemie Weinheim (1986);Google Scholar
Zei, M., Qiao, G., Lehmpful, G. and Kolb, D.M., Ber. Bunsenges, Phys. Chem. 91, 3494(1987).Google Scholar
2. Blum, L., Abruña, H.D., White, J.H., Albarelli, M.J., Gordon, J.G., Borges, G. L., Samant, M.G. and Melroy, O.R., J. Chem. Phys. 85, 6732 (1986).Google Scholar
3. Blum, L., Advances in Chemical Physics. Rice, S.A. and Prigogine, I., Ed., J. Wiley, New York, 78, 171(1991).Google Scholar
4. Huckaby, D.A. and Blum, L., J. Electroanal. Chem. 315, 255 (1991).Google Scholar
5. Blum, L. and Huckaby, D.A., J. Electroanal. Chem. 375, 255 (1991).Google Scholar
6. Blum, L., Huckaby, D. A. and Legatili, M., Electrochimica Acta 41, 2207 (1996).Google Scholar
7. Legault, M., Blum, L. and Huckaby, D.A., J. Electroanal. Chem. 409, 79 (1996).Google Scholar
8. Legault, M., Huckaby, D.A. and Blum, L., J. Chem. Phys (in press).Google Scholar
9. Trassatti, S., J. Electroanal. Chem. 33, 351 (1971).Google Scholar
10. Goodisman, J., Electrochemistry: Theoretical Foundations. Wiley and Sons, New York (1987)Google Scholar
11. Schmickler, W., J. Elecetroanal. Chem. 100, 533 (1979).Google Scholar
12. Kornyshev, A.A. and Schmickler, W., J. Electroanal. Chem. 185, 253 (1985).Google Scholar
13. Schmickler, W., Chem. Phys. 141, 95 (1990).Google Scholar
14. Leiva, E. and Schmickler, W., Electrochimica Acta 40, 37 (1995).Google Scholar
15. Price, D. and Halley, J.W., Phys. Rev. B23, 12304 (1989).Google Scholar
16. Curtiss, L.A., Halley, J.W., Hautmann, J., Huang, N.C., Nagy, Z., Ree, Y.J. and Yonco, R.M., J. Electroc. Soc. 138, 2033 (1991).Google Scholar
17. Ulstrup, J., Charge Transfer Processes in Condensed Media. Springer, Berlin (1979).Google Scholar
18. Leiva, E.P.M. and Schmickler, W., Chem. Phys. Lett. 160, 75 (1989).Google Scholar
19. Leiva, E.P.M., J. Electroanal. Chem. 350, 1 (1993).Google Scholar
20. Honbo, H. and Itaya, K., J. Chem. Phys. 88, 1477 (1991).Google Scholar