Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-20T05:42:25.830Z Has data issue: false hasContentIssue false

Fabrication of Ta2O5 Thin Films by Anodic Oxidation of Tantalum Nitride and Tantalum Silicide: Growing Mechanisms, Electrical Characterization and ULSI M-I-M Capacitor Performances

Published online by Cambridge University Press:  10 February 2011

S. Dueñas
Affiliation:
Dept. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, SPAIN, sduenas@ele.uva.es
H. Castán
Affiliation:
Dept. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, SPAIN, sduenas@ele.uva.es
J. Barbolla
Affiliation:
Dept. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, SPAIN, sduenas@ele.uva.es
R.R. Kola
Affiliation:
Bell Laboratories, Lucent Technologies, 700 Mountain Ave., Murray Hill, NJ 07974
P.A. Sullivan
Affiliation:
Dept. Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, SPAIN, sduenas@ele.uva.es
Get access

Abstract

In this work we report on tantalum oxide fabricated by anodic oxidation of tantalum nitride and tantalum silicide to be used as the dielectric of Metal-Insulator-Metal (MIM) capacitors. These films exhibit greatly improved leakage currents, breakdown voltage and very low defect density, thus allowing the fabrication of large area capacitors. Several counter and bottom electrodes have been used and compared. The effects of the different processing conditions (top-electrode metals, annealing conditions, bottom electrode stoichiometry and precursor) on the capacitor performances are extensively discussed throughout this work. The electrical behavior of the resulting high-density MIM capacitors has been extensively characterized. Finally, we propose a set of selection guides to select the more appropriate process parameter values and electrode materials for a given application of these capacitors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Revesz, A.G. and Kirkendall, T.D., J.Electrochem. Soc., 123, 1515 (1976).Google Scholar
2 Oehrlein, G.S. and Reisman, A., J.Appl. Phys., 54, 6502 (1983).10.1063/1.331880Google Scholar
3 Ohta, K., Yamada, K., Shmizu, R. and Tarui, Y., IEEE Trans. Electron Devices, ED–29, 368 (1982)10.1109/T-ED.1982.20711Google Scholar
4 Peters, M., Lee, M.G., Takahashi, Y. and Beilin, S., ICEMCM'96 Proceedings, 94 (1996)Google Scholar
5 Nishioka, Y., Kimura, S. and Mukai, K., 165th Electrochem. Soc. Meet. 160 (1984)Google Scholar
6 Roberts, S., Ryan, J., and Nesbit, L., J.Electrochem. Soc., 133, 1405 (1986)10.1149/1.2108899Google Scholar
7 Shinriki, H. and Nakata, M., IEEE Trans. Electron. Devices, ED–38 (3), 455 (1991)10.1109/16.75185Google Scholar
8 Devine, R.A.B., Vallier, L., Autran, J.L., Paillet, P. and Leary, J.L., Appl.Phys.Lett. 68(13)Google Scholar
9 , Nagahori and Raj, R., J.Am.Ceram.Soc. 78(6), 1585 (1995)10.1111/j.1151-2916.1995.tb08855.xGoogle Scholar
10 Aoyama, T. Saida, S., Okayama, Y., Fujisaki, M., Imai, K., and Arikado, T., J.Electrochem.Soc. 143 (3), 977 (1996)10.1149/1.1836568Google Scholar
11 Harrop, P.J. and Campbell, D.S., Thin Solid Films 2 (1968) 273.10.1016/0040-6090(68)90034-5Google Scholar