Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-06-12T06:38:04.678Z Has data issue: false hasContentIssue false

Influence Of Growth Conditions On The Thermal Quenching Of Photoluminescence From Sige/Si Quantum Structures

Published online by Cambridge University Press:  10 February 2011

I. A. Buyanova
Affiliation:
Dept of Physics and Measurement Technology, Linköping University, S-581 83 Linkoping, Sweden
W. M. Chen
Affiliation:
Dept of Physics and Measurement Technology, Linköping University, S-581 83 Linkoping, Sweden
W.-X. Ni
Affiliation:
Dept of Physics and Measurement Technology, Linköping University, S-581 83 Linkoping, Sweden
G. V. Hansson
Affiliation:
Dept of Physics and Measurement Technology, Linköping University, S-581 83 Linkoping, Sweden
B. Monemar
Affiliation:
Dept of Physics and Measurement Technology, Linköping University, S-581 83 Linkoping, Sweden
Get access

Abstract

In this work we study effects of growth temperature and use of surfactant during growth on thermal quenching of photoluminescence (PL) from SiGe/Si quantum wells (QWs) grown by molecular beam epitaxy (MBE). We show that although all investigated structures demonstrate intense and sharp excitonic emissions from the SiGe QWs at liquid helium temperature, thermal quenching of this PL critically depends on the growth conditions. In particular, the use of low (⁤ 550°C) growth temperatures or employing Sb as a surfactant during high temperature (620°C) growth considerably degrades the PL thermal quenching behaviour by introducing some competing quenching processes with low activation energies of about 5 meV. The optimum growth conditions judging from the PL thermal behaviour are realised during high temperature growth without surfactant (620°C). Even higher growth temperature is shown to be required during surfactant mediated growth to improve the thermal quenching behaviour. From optically detected magnetic resonance (ODMR) studies, the competing quenching processes are attributed to a thermal activation of non-radiative defects introduced during either low-temperature MBE growth or during surfactant-mediated growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tournie, E. and Ploog, K. H., Thin Sold Films 231, 43 (1993).Google Scholar
2. Ni, W.-X., Henry, A., Larsson, M. I., Joelsson, K., and Hansson, G. V., Appl. Phys. Lett. 65, 1772 (1994).Google Scholar
3. Wachter, M., Schäffler, F., Herzog, H.-J., Thonke, K., and Sauer, R., Appl. Phys. Lett. 63, 376 (1993).Google Scholar
4. Usami, N., Fukatsu, S., and Shiraki, Y., Appl. Phys. Lett. 63, 388 (1993).Google Scholar
5. Zeindl, H. P., Nilsson, S., Klatt, J., Krüger, D., Kurps, R., J. Crystal Growth, 157, 31 (1995).Google Scholar
6. Sturm, J. C., Manoharan, H., Lenchyshyn, L. C., Thewalt, M. L. W., Rowell, N. W., Nodl, J.- P., and Houghton, D. C., Phys. Rev. Lett. 66, 1362 (1991).Google Scholar
7. Lenchyshyn, L. C., Thewalt, M. L. W., Sturm, J. C., Schwartz, P. V., Prinz, E. J.,, Rowell, N. W., Noel, J.-P., and Houghton, D. C., Appl. Phys. Lett. 60, 3174 (1992).Google Scholar
8. Buyanova, I. A., Chen, W. M., Pozina, G., Ni, W.-X., Hansson, G. V., and Monemar, B., Appl. Phys. Lett. 71, 3676 (1997).Google Scholar
9. A. St. Amour, Sturm, J. C., Lacroix, Y., and Thewalt, M. L. W., Appl. Phys. Lett. 65, 3344 (1994).Google Scholar
10. Chen, W. M., Buyanova, I. A., Ni, W.-X., Hansson, G. V., and Monemar, B., Phys. Rev.Lett. 77, 4214 (1996).Google Scholar
11. Chen, W. M., Buyanova, I. A., Henry, A., Ni, W.-X., Hansson, G. V., and Monemar, B., Appl. Phys. Lett. 68, 1256 (1996).Google Scholar
12. Chen, W. M., Buyanova, I. A., Ni, W.-X., Hansson, G. V., and Monemar, B., Appl. Phys. Lett. 70, 369 (1997).Google Scholar