Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-01T18:16:57.073Z Has data issue: false hasContentIssue false

Inverse Magnetoresistance In Manganite/SrTiO3/Co Tunnel Junctions

Published online by Cambridge University Press:  10 February 2011

J. M. De Teresa
Affiliation:
UMR de Physique CNRS-Thomson CSF, LCR, Domaine de Corbeville, 91404 Orsay cedex, France.
A. Barthélémy
Affiliation:
UMR de Physique CNRS-Thomson CSF, LCR, Domaine de Corbeville, 91404 Orsay cedex, France.
J. P. Contour
Affiliation:
UMR de Physique CNRS-Thomson CSF, LCR, Domaine de Corbeville, 91404 Orsay cedex, France.
A. Fert
Affiliation:
UMR de Physique CNRS-Thomson CSF, LCR, Domaine de Corbeville, 91404 Orsay cedex, France.
R. Lyonnet
Affiliation:
UMR de Physique CNRS-Thomson CSF, LCR, Domaine de Corbeville, 91404 Orsay cedex, France.
F. Montaigne
Affiliation:
UMR de Physique CNRS-Thomson CSF, LCR, Domaine de Corbeville, 91404 Orsay cedex, France.
A. Vaurès
Affiliation:
UMR de Physique CNRS-Thomson CSF, LCR, Domaine de Corbeville, 91404 Orsay cedex, France.
P. Seneor
Affiliation:
UMR de Physique CNRS-Thomson CSF, LCR, Domaine de Corbeville, 91404 Orsay cedex, France.
Get access

Abstract

In La0.7Sr0.3MnO3/SrTiO3/Co tunnel junctions, the half-metallic nature of La0.7Sr0.3MnO3 allows probing the spin polarization of Co. For applied voltage bias around zero volts, an inverse tunnel magnetoresistance is found, indicating the negative spin polarization of Co at the Fermi level as expected from the density of states of the “d” band in Co. The bias dependence of the magnetoresistance reflects the structure of the “d” band density of states of Co. In this article we underline the important consequences for the knowledge of the spin-dependent tunneling in solids brought by these results and describe in detail the effect of temperature and high magnetic field on the magnetoresistance.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tedrow, P.M. and Meservey, R., Phys. Rev. Lett. 26, 192 (1971)10.1103/PhysRevLett.26.192Google Scholar
2. Prinz, G., Phys. Today 48, 58 (1995)10.1063/1.881459Google Scholar
3. Moodera, J.S. et al., Phys. Rev. Lett. 74, 3273 (1995)10.1103/PhysRevLett.74.3273Google Scholar
4. Julliére, M., Phys. Lett. 54A, 225 (1975)10.1016/0375-9601(75)90174-7Google Scholar
5. Park, J.H. et al., Nature 392, 794 (1998)10.1038/33883Google Scholar
6. Wang, K., PhD thesis, New York 1999 and P.M. Levy, private communicationGoogle Scholar
7. Tsymbal, E. Yu and Pettifor, D.G., J. Phys.: Condens. Matter 9, L411 (1997) and K. Wang et al., J. Magn. Magn. Mater. 189, 1 (1998)Google Scholar
8. Lu, Yu et al., Phys. Rev. B54 (1996) R8357 and X.W. Li et al., J. Appl. Phys. 81, 5509 (1997)10.1103/PhysRevB.54.R8357Google Scholar
9. Nassar, J. et al., Mater. Res. Soc. Proc. 494, 231 (1998)10.1557/PROC-494-231Google Scholar