Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-15T12:34:46.399Z Has data issue: false hasContentIssue false

A Kinetic Model of Precipitate Evolution

Published online by Cambridge University Press:  21 February 2011

C. Lane Rohrer
Affiliation:
Aluminum Company of America, Alcoa Technical Center, Alcoa Center, PA, 15069
M. D. Asta
Affiliation:
Sandia National Laboratories, Livermore, CA, 94551
S. M. Foiles
Affiliation:
Sandia National Laboratories, Livermore, CA, 94551
R. W. Hyland Jr.
Affiliation:
Aluminum Company of America, Alcoa Technical Center, Alcoa Center, PA, 15069
Get access

Abstract

Chemical reaction rate theory is used to model the kinetics of precipitation reactions in Al alloys, including the effects of continuous cooling and thermally generated point defects. The computational method models the processes of nucleation, growth, and coarsening within a single framework. Calculated time and temperature dependent precipitate number densities and sizes during the homogeneous precipitation of the A13Sc phase in an Al-.11 at% Sc alloy are shown to compare favorably with experimental observations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Glasstone, S., Laidler, K. J., Eyring, H., Theory of Rate Processes, (McGraw-Hill, New York, 1941).Google Scholar
2 Venables, J. A., Phil. Mag. 27, 697 (1973); J. B. Adams, W. N. G. Hitchon, L. M. Holzmann, J. Vac. Sci. Technol. A 6, 2029 (1988); G. S. Bales and D. C. Chrzan, submitted to Phys. Rev. B (1994); J. H. Fikus and R. A. Johnson, Rad. Effects 40, 63 (1979); M. F. Wehner and W. G. Wolter, Phil. Mag. A 52, 189 (1985); J. B. Adams and W. G. Wolfer, Acta metall. mater. 41, 2625 (1993); K. Binder and D. Stauffer, Adv. in Phys. 25, 343 (1976); K. F. Kelton and A. L. Greer, Phys. Rev. B 38, 10089 (1988).Google Scholar
3 Gibbs, J. W., Scientific Papers, Vol. 1 and II, (Longmans Green, London, 1906); M. Volmer and A. Weber, Zeit. Phys. Chem. 119, 227 (1926); L. Farkas, Zeit. Phys. Chem. 125, 236 (1927); R. Becker and W. Döring, Ann. Phys. 24, 719 (1935).Google Scholar
4 Aaronson, H. I. and Lee, J. K., in Lectures on the Theory of Phase Transformations, edited by Aaronson, H. I. (AIME, 1975), p. 87.Google Scholar
5 Feder, J., Russell, K. C., Lothe, J., Pound, G. M., Advances in Physics 15 (57), 111 (1966).Google Scholar
6 Kelton, K. F., Greer, A. L., Thompson, C. V., J. Chem. Phys. 79, 6261 (1983).Google Scholar
7 Russell, K. C., in Phase Transformations (ASM Metals Park, OH, 1970), p. 2625.Google Scholar
8 Flynn, C. P., Point Defects and Diffusion (Clarendon Press, Oxford, 1972), p. 46.Google Scholar
9 Lane Rohrer, C., Hyland, R. W. Jr., Foiles, S. M., Report #93-56-EH12, Alcoa Technical Center, PA (1994).Google Scholar
10 Kampmann, R., Ebel, Th., Haese, M., Wagner, R., phys. stat. sol. (b) 172, 295 (1992).Google Scholar
11 Trivedi, R. K., in Lectures on the Theory of Phase Transformations, edited by Aaronson, H. I. (AIME, 1975), p. 79.Google Scholar
12 Sundar, G. and Hoyt, J. J., J. Mater. Res. 10, 1674 (1995).Google Scholar
13 Balluffi, R. W., J. Nucl. Mater. 69&70, 240 (1978).Google Scholar
14 Fujikawa, S. and Ushino, S., Kakuriken Kenkyu Hokoku (Tohoku Daigaku) 121, 226 (1988).Google Scholar
15 Murray, J. L., Report #89-56-EH7, Alcoa Technical Center, PA (1989).Google Scholar
16 Hyland, R. W. Jr., Met. Trans. A 23A, 1947 (1992).Google Scholar