Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-01T03:00:48.672Z Has data issue: false hasContentIssue false

Light Scattering Study of the Evolution of the Surface Morphology During Growth of Ingaas on GaAs

Published online by Cambridge University Press:  15 February 2011

C. Lavoie
Affiliation:
Department of Physics, University of British Columbia, Vancouver, B. C. V6T-1Z1
B. Haveman
Affiliation:
Department of Physics, University of British Columbia, Vancouver, B. C. V6T-1Z1
E. Nodwell
Affiliation:
Department of Physics, University of British Columbia, Vancouver, B. C. V6T-1Z1
T. Pinnington
Affiliation:
Department of Physics, University of British Columbia, Vancouver, B. C. V6T-1Z1
T. Tiedje
Affiliation:
Department of Electrical Engineering, University of British Columbia, Vancouver, B. C. V6T-1Z1
R. S. Goldman
Affiliation:
Department of Electrical and Computer EngineeringUniversity of California, San Diego, CA 92093-0407
K. L. Kavanagh
Affiliation:
Department of Electrical and Computer EngineeringUniversity of California, San Diego, CA 92093-0407
J. L. Hutter
Affiliation:
Department of PhysicsSimon Fraser University, Burnaby, B. C. V5A-1S6
J. Bechhoefer
Affiliation:
Department of PhysicsSimon Fraser University, Burnaby, B. C. V5A-1S6
Get access

Abstract

In-situ elastic light scattering is used to measure the evolution of the surface morphology of InxGa1−xAs films during molecular beam epitaxy growth on GaAs substrates. The in-situ measurements are compared with ex-situ measurements of the surface morphology on quenched films by optical scatterometry and atomic force microscopy (AFM). The AFM results are in good agreement with the rms roughness obtained from light scattering and both techniques detect the onset of misfit dislocation formation in this system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Smith, G. W., Pidduck, A. J., Whitehouse, C. R., Glasper, J. L., Spowart, J., J. Cryst. Growth 127, 966 (1993).Google Scholar
2. Celii, F. G., Kao, Y. C., Liu, H.-Y., Files-Sesler, L. A., Beam, E. A. III, J. Vac. Sci. Technol. B 11, 1015 (1993); F. G. Celii, L. A. Files-Sesler, E. A. Beam III, H.-Y. Liu, J. Vac. Sci. Technol. A 11, 1796 (1993).Google Scholar
3. Lavoie, C., Johnson, S. R., Mackenzie, J. A., Tiedje, T., Buuren, T. van, J. Vac. Sci. Technol.A 10, 930 (1992).Google Scholar
4. Yang, K., Mirabelli, E., Wu, Z.-C., Schowalter, L. J., J. Vac. Sci. Technol. B 11, 1011 (1993).Google Scholar
5. Lavoie, C., Nissen, M. K., Eisebitt, S., Johnson, S. R., Mackenzie, J. A., Tiedje, T., Mat. Res. Soc. Symp. Proc. 324, 119 (1994).Google Scholar
6. Bennett, J. M., Mattsson, L., Introduction to Surface Roughness and Scattering, Optical Society of America (1989).Google Scholar
7. Cullis, A. G., Robbins, D. J., Pidduck, A. J., Smith, P. W., J. Cryst. Growth 123, 333 (1992).Google Scholar
8. Tersoff, J., LeGoues, F. K., Phys. Rev. Lett. 72, 3570 (1994).Google Scholar
9. SpringThorpe, A. J., Majeed, A., J. Vac. Sci. Technol. B 8, 266 (1990).Google Scholar
10. Church, E. L., Jenkinson, H. A., Zavada, J. M., Optical Engineering 18, 116 (1979).Google Scholar