Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-16T10:13:58.106Z Has data issue: false hasContentIssue false

Mechanisms of Formation of Nonlinear Optical Light Guide Structures in Metal Cluster Composites Produced by Ion Beam Implantation

Published online by Cambridge University Press:  10 February 2011

S. S. Sarkisov
Affiliation:
Department of Natural and Physical Sciences, Alabama A&M University, 4900 Meridian Drive, Normal, AL, 35762
E. K. Williams
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, 4900 Meridian Drive, Normal, AL, 35762
M. J. Curley
Affiliation:
Department of Natural and Physical Sciences, Alabama A&M University, 4900 Meridian Drive, Normal, AL, 35762
C. C. Smith
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, 4900 Meridian Drive, Normal, AL, 35762
D. Ila
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, 4900 Meridian Drive, Normal, AL, 35762
P. Venkateswarlu
Affiliation:
Department of Natural and Physical Sciences, Alabama A&M University, 4900 Meridian Drive, Normal, AL, 35762
D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831
D. K. Hensley
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831
Get access

Abstract

We report the results of characterization of linear and nonlinear optical properties of a light guide structure produced by MeV Ag ion implantation of LiNbO3 crystal (z-cut) in relation to the mechanisms of formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Haglund, R.F., Yang, L., Magruder, R.H., Wittig, J.E., Becker, K. and Zuhr, R.A., Opt. Lett. 18, 373 (1993).Google Scholar
2. Sarkisov, S.S., Williams, E.K., Ila, D., Venkateswarlu, P., Poker, D.B., Appl. Phys. Lett. 68, 2329 (1996).Google Scholar
3. Zeigler, J.F., Biersack, J.P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
4. Ulrich, R. and Torge, R., Appl. Opt. 12, 2901 (1973).Google Scholar
5. Hugs, A.E. and Jian, S.C., Adv. Phys. 28, 717 (1979).Google Scholar
6. Arnold, G.W., J. Appl. Phys. 46, 4466 (1975).Google Scholar
7. Shang, D.Y., Saito, Y., Kittaka, R., Toniguchi, S. and Kitahara, A., J. Appl. Phys. 80, 6651 (1996).Google Scholar
8. Williams, E.K., PhD thesis, Alabama A&M University, 1996.Google Scholar
9. Poker, D.B. and Thomas, D.K., Nucl. Inst. and Meth. B 39, 716 (1989).Google Scholar
10. Sheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., Van Stryland, E.W., IEEE J. Quantum Electronics, 26, 760 (1990).Google Scholar
11. Haglund, R.F. Jr Quantum-Dot Composites for Nonlinear Optical Applications, in Handbook of Optical Properties. Volume II. Optics of Small Particles, Interfaces. and Surfaces, edited by R.F., Hummel and P., Wismann (CRC Press, Boca Raton, 1997) p. 198.Google Scholar