Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-05T16:00:07.741Z Has data issue: false hasContentIssue false

A New type of Graded Buffer Layer for Gas-Source Molecular Beam Epitaxial Growth of Highly Strained INxGA1−XP/GAP Multiple Quantum Wells on Gap

Published online by Cambridge University Press:  15 February 2011

W. G. Bi
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407
C. W. Tu
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407
Get access

Abstract

A new type of graded buffer layer, called graded short-period superlattice (GSSL) buffer layer, is proposed, and its effect on improving the material quality is investigated by comparing the qualities of 50-period InGaP/GaP multiple quantum wells (MQWs) grown on top of it and on a linearly graded (LG) buffer layer. Unlike the linearly graded buffer layer, in which the In composition is changed 1% per step size with a constant composition InGaP, the new buffer uses InGaP/GaP short-period superlattice within each step, while maintaining the average In composition of the short-period superlattice being changed the same amount per step size. Characterization of these structures by high-resolution X-ray diffraction and low-temperature photoluminescence indicates that, while the MQWs grown on a GSSL buffer show comparable structural properties as compared with those on an LG buffer, they exhibit higher PL intensity and narrower PL line width.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chin, T. P., Hou, H. Q., Tu, C. W., Chang, J. C. P., and Otsuka, N., Appl. Phys. Lett. 64, 2001 (1994).Google Scholar
[2] Adams, A. R., Electron. Lett. 22, 249 (1986).Google Scholar
[3] Gershoni, D., Vandenberg, J. M., Hamm, R. A., Temkin, H., and Panish, M. B., Phys. Rev. B36, 1320.Google Scholar
[4] Cao, D. S., Chen, C. H., Fry, K. L., Reihlen, E. H., and Stringfellow, G. B., J. Appl. Phys. 65, 2451 (1989).Google Scholar
[5] Lord, S. M, Pezeshki, B., Marshall, A. F., Harris, J. S. Jr., Fernadez, R., and Harwit, A., Mat. Res. Soc. Syup. Proc Vol. 281, 221 (1993),Google Scholar
[6] Harmand, J. C., Matsuno, T., and Inoue, K., Inst. Phys. Conf. Ser. No. 106, Chapter 4, 177 (1990).Google Scholar
[7] Chin, T. P., Chang, J. C. P., Kavanagh, K. L., and Tu, C. W., Appl. Phys. Lett. 62, 2369 (1993).Google Scholar
[8] Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 32, 265 (1976).Google Scholar
[9] Gourley, P. L., Drummond, T. J., and Dole, B. L., Appl. Phys. Lett. 49, 1101 (1986).Google Scholar
[10] Soga, T., Hattori, S., Sakai, S., Takeyasu, M., and Umeno, M., J. Appl. Phys. 57, 4578 (1985).Google Scholar
[11] Fizgerald, E. A., Xie, Y. H., Monroe, D., Silerman, P. J., Kuo, J. M., Kortan, A. R., Thiel, F. A., and Weor, B. E., J. Vac. Sci. Technol. 10, 1807 (1992).Google Scholar
[12] Chang, K. H., Gibala, R., Srolovitz, D. J., Bhattacharya, P. K., and Mansfield, J. F., J. Appl. Phys. 67, 4093 (1990).Google Scholar
[13] Lord, S. M., Pezeshki, B., Marshall, A. F., Harris, J. S. Jr., Fernandez, R., and Harwit, A, Mat. Res. Soc. Symp. Proc. Vol. 281, 221 (1993).Google Scholar
[14] Hausler, K. and Eberl, K., (to be published).Google Scholar
[15] Islam, M. R., Neff, J., Chelakara, R., and Dupuis, R. D., 6th Int. Conf on hiP and Related Mat. Proc., 141 (1994).Google Scholar
[16] Sakaki, H., Tanaka, M., and Yoshino, J., Jpn. J. Appl. Phys. 24, L417 (1985).Google Scholar