Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-13T00:45:21.709Z Has data issue: false hasContentIssue false

Non-Destructive Evaluation of 304 Stainless Steels Using a Scanning Hall-Sensor Microscope: Visualization of Strain-Induced Austenite-Phase Breakdown

Published online by Cambridge University Press:  10 February 2011

A. Oota
Affiliation:
Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan, oota@.eee.tut.ac.jp
K. Miyake
Affiliation:
Toyohashi University of Technology, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan, oota@.eee.tut.ac.jp
D. Sugiyama
Affiliation:
Technical Research and Development Laboratories, Topy Industries Ltd., Akemi-cho, Toyohashi 441-8510, Japan
H. Aoki
Affiliation:
Technical Research and Development Laboratories, Topy Industries Ltd., Akemi-cho, Toyohashi 441-8510, Japan
Get access

Abstract

Using a scanning Hall-sensor microscope with an active area 50pμm × 50μm, we succeeded in visualizing a breakdown of paramagnetic austenite-phase in 304 stainless steels induced by a plastic strain at room temperature, resulting from a transformation to ferromagnetic martensite-phase. Magnetic images of spontaneous magnetic fields on a surface of strained sample show the degree and the place (and/or the extent) of phase breakdown. Furthermore, the images nearly agree with the calculated results for the principal shear stress rather than the principal stress under plastic deformation, indicative of the driving force of this breakdown. The study should open a way for non-destructive evaluation of 304 stainless steels.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bray, D. E. and McBride, D. (eds): Non-destructive Testing Techniques (Wiley-Interscience, New York, 1992).Google Scholar
2.Banchet, J., Jouglar, J., Vuillermoz, P. -L., and Waltz, P., IEEE Trans. Appl. Supercond. 5, 2486 (1995).Google Scholar
3.Kasai, N., Isikawa, N., Yamakawa, H., Chinose, K., Nakayama, S., and Odagawa, A., IEEE Trans. Appl. Supercond. 7, 2315 (1997).Google Scholar
4.Chang, A. M., Hallen, H. D., Harriott, L., Hess, H. F., Kao, H. L., Kwo, J., Miller, R. E., Wolfe, R., and Ziel, J. van der, Appl. Phys. Lett. 61, 1974 (1992).Google Scholar
5.Oota, A., Ito, T.. Kawano, K., Sugiyama, D., and Aoki, H., Rev. Sci. Instrum. 70, 184 (1999).Google Scholar
6.Murr, L. E., Staudhammer, K. P., and Hecker, S. S., Metallurgical Transactions 13A, 627 (1982).Google Scholar
7.Garshelis, L. J. and Fiegel, W. S., J. Appl. Phys. 53, 2407 (1982).Google Scholar
8.Cook, D. C., Metallurgical Transactions 18A, 201 (1987).Google Scholar