Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-02T06:44:24.592Z Has data issue: false hasContentIssue false

Ohmic Contact Formation Mechanism of Pd-based Contact to p-GaN

Published online by Cambridge University Press:  15 March 2011

Dae-Woo Kim
Affiliation:
Thin Film Materials Laboratory, School of Materials Science & Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749, Korea
Joon Cheol Bae
Affiliation:
Thin Film Materials Laboratory, School of Materials Science & Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749, Korea
Woo Jin Kim
Affiliation:
Thin Film Materials Laboratory, School of Materials Science & Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749, Korea
Hong Koo Baik
Affiliation:
Thin Film Materials Laboratory, School of Materials Science & Engineering, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul 120-749, Korea
Chong Cook Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Engineering, Pohang, Korea
Jung Ho Je
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Engineering, Pohang, Korea
Chang Hee Hong
Affiliation:
Department of Semiconductor Science and Technology, Semiconductor Physics Center, Chonbuk National University, Chonju 561-756, Korea
Get access

Abstract

We have investigated surface treatment effect on the interfacial reaction of Pd/p-GaN interface and also room temperature ohmic contact formation mechanism of Pd-based ohmic contact. In order to examine room temperature ohmic behavior, various metal contact systems were deposited and current-voltage measurements were carried out. In spite of large theoretical Schottky barrier height between Pd and p-GaN, Pd-based contact showed perfect ohmic characteristic even before annealing. According to the results of synchrotron X-ray radiation, the closed-packed atomic planes (111) of the Pd film were quite well ordered in surface normal direction as well as in the in-plane direction. The effective Schottky barrier height of Au/Pd/Mg/Pd/p-GaN was 0.47eV, which was estimated by Norde method. This discrepancy between theoretical barrier height and the measured one might be due to the epitaxial growth of Pd contact metal and so the room-temperature ohmic characteristic of Pd-based ohmic contact was related strongly to the in-plane epitaxial quality of metal on p-GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morkoc, H., Strite, S., Gao, G. B., Lin, M. E., Sverdlov, B. and Burns, M., J. Appl. Phys. 76, 1363 (1994).Google Scholar
2. Nakamura, Shuji, J. Vac. Sci. Technol. A 13(3), 705 (1995).Google Scholar
3. Suzue, K., Mohammad, S. N., Fan, Z. F., Kim, W., Aktas, O., Botchkarev, A. E. and Morkoc, H., J. Appl. Phys. 80(8), 4467 (1996).Google Scholar
4. Wu, Y.-F., Jiang, W.-N., Keller, B. P., Kapolnek, D., Denbaars, S. P., Mishra, U. K. and Wilson, B., Solid-State Electronics 41(2) 165 (1997).Google Scholar
5. Kim, D.-W., Baik, H. K., Kim, C. Y., Kim, S. W., Hong, C. H., Mat. Res. Soc. Symp. Proc. 482, 1083 (1998).Google Scholar
6. Ho, J.-K., Jong, C.-S., Chiu, C. C., Huang, C.-N., Chen, C.-Y. and Shih, K.-K., Appl. Phys. Lett. 74(9), 1275 (1999).Google Scholar
7. Lee, J.-L., Weber, M., Kim, J. K., Lee, J. W., Park, Y. J., Kim, T. and Lynn, K., Appl. Phys. Lett. 74(16), 2289 (1999).Google Scholar
8. Jang, J.-S., Chang, I.-S., Kim, H.-K., Seong, T.-Y., Lee, S., and Park, S.-J., Appl. Phys. Lett. 74(1), 70 (1999).Google Scholar
9. Sheu, J. K., Su, Y. K., Chi, G. C., Chen, W. C., Huang, C. N., Hong, J. M., Yu, Y. C., Wang, C. W. and Lin, E. K., J. Appl. Phys. 83(6), 3172 (1998).Google Scholar
10. Norde, H., J. Appl. Phys., 50, 5052 (1979).Google Scholar
11. Liu, Q. Z., Lau, S. S., Perkins, N. R. and Kuech, T. F., Appl. Phys. Lett. 69(12), 1772 (1996).Google Scholar
12. Grandjean, N., Massies, J., Vennegues, P., Laugt, M., and Leroux, M., Appl. Phys. Lett. 70, 643 (1997).Google Scholar
13. Spicer, W. E., Chye, P. W., Skeath, P. R., Su, C. Y., and Lindau, I., J. Vac. Sci. Technol. 16, 1422 (1979).Google Scholar
14. Heine, V., Phys. Rev. A 138, 1689(1965).Google Scholar
15. Tersoff, J., Phys. Rev. Lett. 52, 465 (1984).Google Scholar
16. Hasegawa, H. and Ohno, H., J. Vac. Sci. Technol. B4(4), 1130 (1986).Google Scholar
17. Sato, T., Kaneshiro, C. and Hasegawa, H., Jpn. J. Appl. Phys. Part 1 38(2B), 1130 (1999).Google Scholar
18. Pretorius, R., Marais, T. K. and Theron, C. C., Material Science and Engineering, 10, 1 (1993).Google Scholar