Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-01T09:55:29.968Z Has data issue: false hasContentIssue false

Optimized O/Si Composition Ratio for Enhancing Si Nanocrystal Based Luminescence in Si-rich SiOx Grown by PECVD with Argon Diluted SiH4

Published online by Cambridge University Press:  01 February 2011

Chung-Hsiang Chang
Affiliation:
grlin@ntu.edu.tw, National Taiwan University, Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, No. 1, Roosevelt Rd. Sec. 4, Taipei, 10617, Taiwan
Chin-Hua Hsieh
Affiliation:
National Taiwan University, Department of Materials Science and EngineeringNo. 101, Section 2, Kuang Fu Rd.Hsinchu300Taiwan
Li-Jen Chou
Affiliation:
National Tsing Hua UniversityDepartment of Materials Science and EngineeringNo. 101, Section 2, Kuang Fu Rd.Hsinchu300Taiwan
Gong-Ru Lin
Affiliation:
National Taiwan UniversityGraduate Institute of Photonics and Optoelectronics and Department of Electrical EngineeringNo. 1, Roosevelt Rd. Sec. 4Taipei10617Taiwan
Get access

Abstract

Effect of O/Si composition ratio on near-infrared photoluminescence (PL) of PECVD grown Si-rich SiOx after 1100°C annealing are analyzed by Rutherford backscattering (RBS) and Fourier-transformed infrared spectroscopy (FTIR) to show nonlinear relationship with strongest PL at 760 nm at optimized O/Si = 1.24, total Si concentration of 44.6 atom.%, and N2O/SiH4 fluence ratio of 4.5. A nearly Gaussian function of the normalized PL intensity vs. O/Si composition ratio has been observed due to the significant variation on the Si nanocrystals size with the density of the excessive Si atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ye, Q. Tsu, R. and Nicollian, E. H.Resonant tunneling via microcrystalline-silicon quantum confinement,” Phys. Rev. B, vol. 44, pp. 18061811 (1991).Google Scholar
2. Pérez-Rodrìguez, A., González-Varona, O., Garrido, B. Pellegrino, P. Morante, J. R. Bonafos, C. Carrada, M. and Claverie, A.White luminescence from Si+ and C+ ion-implanted SiO2 films,” J. Appl. Phys., vol. 94, pp. 254262 (2003).Google Scholar
3. Pacifici, D. Moreira, E. C. Franzo, G. Martorino, V. and Priolo, F.Defect production and annealing in ion-irradiated Si nanocrystals,” Phys. Rev. B, vol. 65, 144109 (2002).Google Scholar
4. Canham, L. T.Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett., vol. 57, pp. 10461048 (1990).Google Scholar
5. Neufeld, E. Wang, S. Apetz, R. Buchal, C. Carius, R. White, C.W. and Thomas, D.K.Effect of annealing and H2 passivation on the photoluminescence of Si nanocrystals in SiO2 ,” Thin Solid Films, vol. 294, pp.238241 (1997).Google Scholar
6. Withrow, S.P. White, C.W. Meldrum, A. Budai, J.D. Hembree, D.M. and Barbour, J.C.Effects of hydrogen in the annealing environment on photoluminescence from Si nanoparticles in SiO2 ,” J. Appl. Phys., vol. 86, pp. 396401 (1999).Google Scholar
7. Cheylan, S. and Elliman, R.G.Effect of hydrogen on the photoluminescence of Si nanocrystals embedded in a SiO2 matrix,” Appl. Phys. Lett., vol. 78 (2001).Google Scholar
8. Brower, K.L.Kinetics of H2 passivation of Pb centers at the (111) Si-SiO2 interface,” Phys. Rev. B, vol. 38, pp.96579666 (1988).Google Scholar
9. Stathis, J.H. and Cartier, E.Atomic hydrogen reactions with Pb centers at the (100) Si/SiO2 interface,” Phys. Rev. Lett., vol. 72, pp.27452748 (1994).Google Scholar
10. Delerue, C. Allan, G. and Lannoo, M.Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B, vol. 48, pp. 1102411036 (1993).Google Scholar
11. Williams, David B. and Carter, C. Barry, Transmission electron microscopy: a textbook for materials science, Plenum Press, New York, 1996.Google Scholar
12. Wang, Y. Q. Kong, G. L. Chen, W. D. Diao, H. W. Chen, C. Y. Zhang, S. B. and Liao, X. B.Getting high-efficiency photoluminescence from Si nanocrystals in SiO2 matrix,” Appl. Phys. Lett., vol. 81, pp. 41744176 (2002).Google Scholar
13. Gonzalez, P. Fernandez, D. Pou, J. Garcia, E. Serra, J. Leon, B. Perez-Amor, M., Szorenyi, T.Study of the Gas-Phase Parameters Affecting the Silicon-Oxide Film Deposition Induced by an ArF Laser,” Appl. Phys. A, vol. 57, pp. 181185 (1993).Google Scholar
14. Jambois, O. Rinnert, H. Devaux, X., and Vergnat, M., “Influence of the annealing treatments on the luminescence properties of SiO/SiO2 multilayers,” J. Appl. Phys., vol. 100, Art. No. 123504 (2006).Google Scholar
15. Ay, F. Aydinli, A.Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides,” Optical Materials, vol. 26, pp.3346 (2004).Google Scholar
16. Yuna, F. Hindsa, B.J. Hatatania, S. Odaa, S., Zhaob, Q.X. Willander, M.Study of structural and optical properties of nanocrystalline silicon embedded in SiO2 ,” Thin Solid Films, vol. 375, pp.137141 (2000).Google Scholar
17. Cho, Chang-Hee, Kim, Baek-Hyun, Kim, Tae-Wook, and Park, Seong-Ju, Park, Nae-Man and Sung, Gun-Yong, “Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film,” Appl. Phys. Lett., vol. 86, pp. 143107 (2005).Google Scholar
18. Guhaa, S. Qadri, S. B. Musket, R. G. Wall, M. A. and Shimizu-Iwayama, Tsutomu, “Characterization of Si nanocrystals grown by annealing SiO2 films with uniform concentrations of implanted Si,” J. Appl. Phys., vol. 88, pp. 39543961 (2000).Google Scholar