Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-10T06:55:17.329Z Has data issue: false hasContentIssue false

Photocatalytic Hydrogen Evolution over Tantalate Photocatalysts

Published online by Cambridge University Press:  26 February 2011

Jaturong Jitputti
Affiliation:
jaturong@iae.kyoto-u.ac.jp, Institute of Advanced Energy, Kyoto University, Molecular Assemblies Design Research Section, Gokasho, Uji, Kyoto, 611-0011, Japan, 81-774-38-3506, 81-774-38-3508
Sorapong Pavasupree
Affiliation:
sorapong@iae.kyoto-u.ac.jp, Institute of Advanced Energy, Kyoto University, Molecular Assemblies Design Research Section, Gokasho, Uji, Kyoto, 611-0011, Japan
Yoshikazu Suzuki
Affiliation:
suzuki@iae.kyoto-u.ac.jp, Institute of Advanced Energy, Kyoto University, Molecular Assemblies Design Research Section, Gokasho, Uji, Kyoto, 611-0011, Japan
Susumu Yoshikawa
Affiliation:
s-yoshi@iae.kyoto-u.ac.jp, Institute of Advanced Energy, Kyoto University, Molecular Assemblies Design Research Section, Gokasho, Uji, Kyoto, 611-0011, Japan
Get access

Abstract

Tantalate and titanate photocatalysts were prepared by solid-state reaction at 1273 K using various ratios of SrCO3, Ta2O5, and TiO2 as starting materials. The prepared solid photocatalysts were characterized using XRD and SEM analysis. These prepared tantalate and titanate photocatalysts showed high photocatalytic H2 evolution activity by water splitting without co-catalyst loading. The highest H2 evolution rate of prepared photocatalysts was found to be 138 μmolh−1 with the starting materials ratio of 2/0.5/1.5 (Sr/Ta/Ti; mol). Furthermore, this photocatalyst showed photocatalytic activity for H2 evolution from distilled water.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fujishima, A. and Honda, K. (1972), Nature, 238, 3738.Google Scholar
2. Maeda, K., Teramura, K., Masuda, H., Takata, T., Saito, N., Inoue, Y., and Domen, K., J. Phys. Chem. B (2006), 110, 1310713112.10.1021/jp0616563Google Scholar
3. Tsuji, I., Kato, H., and Kudo, A. (2006), Chem. Mater., 18, 19691975.10.1021/cm0527017Google Scholar
4. Sayama, K., Arakawa, H. (1997), J. Chem Soc., Faraday Trans., 93, 16471654.10.1039/a607662iGoogle Scholar
5. Kato, H. and Kudo, A. (2002), J. Phys. Chem. B, 106, 50295034 10.1021/jp0255482Google Scholar
6. Yoshioka a, K., Petrykin, V., Kakihana, M., Kato, H., Kudo, A. (2005), J. Catal., 232, 102107 Google Scholar
7. Zou, Z., Ye, J., Sayama, K., and Arakawa, H. (2001), Nature, 414, 625627.Google Scholar
8. Kudo, A., Kato, H. (2000), Chem. Phys. Lett., 331 373377.10.1016/S0009-2614(00)01220-3Google Scholar
9. Kato, H., Asakura, K., and Kudo, A., J. Am. Chem. Soc. (2003), 125, 30823089 Google Scholar
10. Kato, H. and Kudo, A. (2001), J. Phys. Chem. B, 105, 42854292.Google Scholar
11. Konta, R., Ishii, T., Kato, H., and Kudo, A. (2004), J. Phys. Chem. B, 108, 89928995.Google Scholar
12. Sayama, K. and Arakawa, H. , J. (1994) Photochem. Photobiol. A:Chem., 77, 243247.10.1016/1010-6030(94)80049-9Google Scholar
13. Sreethawong, T. Suzuki, Y., and Yoshikawa, S. (2005), Int. J. Hydron Energ., 30, 10531062.Google Scholar
14. Jitputti, J., Pavasupree, S. Suzuki, Y., and Yoshikawa, S. In contribution.Google Scholar
15. He, Y., Zhu, Y, Wu, N. (2004), J. Solid State Chem., 177, 38683872.10.1016/j.jssc.2004.07.011Google Scholar
16. So, W. W., Kim, K. J. and Moon, S. J. (2004), Int. J Hydrogen Energy, 29, 229234.Google Scholar
17. De, G. C., Roy, A. M. and Bhattacharya, S. S. (1996), Int. J Hydrogen Energy, 21, 1923. Google Scholar
18. Tennakone, K. and Bandara, J. (2001), Appl Catal A: Gen, 208, 335341. 10.1016/S0926-860X(00)00738-9Google Scholar