Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-12T07:03:19.082Z Has data issue: false hasContentIssue false

A Raman Scattering, Ion Channelling and Photoluminescence Study of Argon Ion Radiation Damage in Cu(Ga,In)Se2 - Dose Dependence and Dose Rate Effects

Published online by Cambridge University Press:  15 February 2011

G. Lippold
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Linnestr. 5, D-04103 Leipzig, Germany, lippold@physik.uni-leipzig.de
K. Weinert
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Linnestr. 5, D-04103 Leipzig, Germany, lippold@physik.uni-leipzig.de
M.V. Yakushev
Affiliation:
University of Salford, Department of Physics, Salford M5 4WT, UK
R.D. Pilkington
Affiliation:
University of Salford, Department of Physics, Salford M5 4WT, UK
K. Otte
Affiliation:
Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, D-04318 Leipzig, Germany
W. Grill
Affiliation:
Universität Leipzig, Fakultät für Physik und Geowissenschaften, Linnestr. 5, D-04103 Leipzig, Germany, lippold@physik.uni-leipzig.de
Get access

Abstract

The ternary chalcopyrite semiconductor CuInSe2 and related ternary compounds are promising materials for the production of high-efficiency thin film solar cells. In this paper we study the dose dependence of ion radiation damage produced by 30 keV and 80 keV Ar ions in single crystals and polycrystalline films of Cu(In,Ga)Se 2 over a wide dose range from 1012 to 1017 cm-2, using Raman spectroscopy and ion channeling measurements. For the first time, we also report on the dose rate dependence with a variation of the beam current density in the range 0.44 to 44 µcm-2. Even for low damage levels no significant dependence of the defect concentration or damage mechanism on the dose rate could be observed. From phonon correlation length considerations we estimate defect densities. They are in agreement with ion channeling data obtained in the 1015 to 1016 dose range, where the breakdown of the lattice structure occurs. In this dose range, the defect density is close to the concentration of implanted atoms. We conclude, that this high impurity concentration is responsible for the amorphization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yakushev, M.V., Martin, R.W., Urquhart, F., Faunce, C.A., Hill, A.E., Pilkington, R.D. and Tomlinson, R.D., Inst. Phys. Conf. Ser. No 152, 437 (1998)Google Scholar
2. Yakushev, M.V., Tashlykov, I.S., Tomlinson, R.D., Hill, A.E., Pilkington, R.D., Mat. Sci. Forum 248–249, 171 (1997)Google Scholar
3. Yakushev, M.V., Tomlinson, R.D., Neumann, H., Cryst. Res. Technol. 29, 125 (1994)Google Scholar
4. Lippold, G., Yakushev, M.V., Tomlinson, R.D., Hill, A.E., Grill, W., Cryst. Res. Technol. S31, 381 (1996)Google Scholar
5. Yakushev, M.V., Lippold, G., Hill, A. E., Pilkington, R.D., Tomlinson, R.D., Cryst. Res. Technol. S31, 357 (1996)Google Scholar
6. Mullan, C.A., Kiely, C.J., Yakushev, M.V., Imanieh, M., Tomlinson, R. D., Rockett, A., Microscopy of Semiconducting Materials. Proc. of the Royal Microscopy Society Conference, p.547 (1993)Google Scholar
7. Polity, A., Krause-Rehberg, A.R., Staab, T.E.M., Puska, M.J., Klais, J., Moller, H.J., Meyer, B.K., J. Appl. Phys. 83, 71 (1998)Google Scholar
8. Yamaguchi, M., J.Appl. Phys. 78, 1476 (1995)Google Scholar
9 Burgess, R.M., Chen, W.S., Devaney, W.E., Doyle, D.H., Kim, N.P., Stanbery, B.J., Conf. Record of the 20th IEEE Photovoltaic Specialists Conference, Las Vegas, 26-30 Sept 1988, vol. 2, 909 (1988)Google Scholar
10 Burgess, R.W., Devaney, W.E., Chen, W.S., Conference Record of the 23rd IEEE Photovoltaic Specialists Conference, Louisville, p. 1465 (1993)Google Scholar
11. Lippold, G., Eifler, A., Yakushev, M.V., Tomlinson, R.D., Klenk, R., Schock, H.W., Grill, W., Inst. Phys. Conf. Ser. No 152, 697 (1998)Google Scholar
12. Biersack, J.P., Haggmark, L.G., Nucl. Instr. Meth. 174, 257 (1980)Google Scholar
13. Tanino, H., Maeda, T., Fujikake, H., Nakanishi, H., Endo, S., Irie, T., Phys. Rev. B 45, 13323 (1992)Google Scholar
14. Weinert, K., Lippold, G., Yakushev, M.V., Tomlinson, R.D., Klenk, R., Nadenau, V., Proc. of the 2 World Conference on Photovoltaic Solar Energy Conversion, July 6-10, Vienna, Austria, in pressGoogle Scholar