Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-13T02:01:51.537Z Has data issue: false hasContentIssue false

Real Time Composition Monitoring Methods in Physical Vapor Deposition oF Cu(In, Ga)Se2 Thin Films

Published online by Cambridge University Press:  10 February 2011

Takayuki Negami
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co.,Ltd 3-4 Hikaridai, Seikacho, Kyoto 619-02, Japan
Mikihiko Nishitani
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co.,Ltd 3-4 Hikaridai, Seikacho, Kyoto 619-02, Japan
Naoki Kohara
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co.,Ltd 3-4 Hikaridai, Seikacho, Kyoto 619-02, Japan
Yasuhiro Hashimoto
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co.,Ltd 3-4 Hikaridai, Seikacho, Kyoto 619-02, Japan
Takahiro Wada
Affiliation:
Central Research Laboratories, Matsushita Electric Industrial Co.,Ltd 3-4 Hikaridai, Seikacho, Kyoto 619-02, Japan
Get access

Abstract

Three real-time composition monitoring methods in physical vapor deposition process of CIGS thin films were proposed. One is the detection of near infrared (NIR) transmittance through the CIGS films from the IR source such as a heater back side of the substrate. One is the detection of NIR reflectance of the incident light from the films. The other is the measurement of the substrate temperature during the preparation of the CIGS films. These methods utilize the difference of the carrier density between Cu-rich (∼ 1020/cm3) and (In+Ga)-rich ( > 1016/cm3) films. The NIR transmittance through and reflectance from the Cu-rich film decrease due to high free carrier absorption. The temperature of the Cu-rich films was lower than that of the (In+Ga)-rich ones under the constant heating power because the Cu-rich films have larger radiation in proportion to absorption. Therefore, the change of Cu/(In+Ga) ratios at stoichiometry can be monitored by the variation of the NIR transmittance, NIR reflectance or the film temperature in real time. These composition monitoring methods are very useful and easily applied to the physical vapor deposition process of the CIGS films for photovoltaic application. The solar cell with active area of about 0.5 cm2, fabricated by obtaining the CIGS film using the latter monitoring method, showed an efficiency of 17.0%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tuttle, J. R., Contreras, M. A., Gillespie, T. J., Ramanathan, K. R., Tennant, A. L., Keane, J., Gabor, A. M., Noufi, R., Prog. Photovolt., 3, p.235 (1995).Google Scholar
[2] Stolt, L., Heldstrom, J., Kessler, J., Ruckh, M., Velthaus, K. O., Schock, H. W., Appl. Phys. Lett. 62, p. 597 (1993).Google Scholar
[3] Nishitani, M., Negami, T., Ikeda, M., Kohara, N., Terauchi, M., Wada, T., Hirao, T., 1994 IEEE 1st World Conf Photovoltaic Energy Conversion, Conf. Record of the 24th IEEE photovoltaic specialist Cof -1994,1, p.222 (1994).Google Scholar
[4] Chen, W. S., Mickelsen, R. A., Proc. Soc. Photo-Opt. Instrum. Enb., 248. p.62 (1981).Google Scholar
[5] Contreras, M. A., Gabor, A. M., Tennant, A. L., Asher, S., Tuttle, J. R., Noufi, R., Prog. Photovolt., 3, p, 287 (1994).Google Scholar
[6] Walter, T., Schock, H. W., Thin Solid Films, 224, p. 74 (1993).Google Scholar
[7] Klenk, R., Walter, T., Schock, H. W., Cahen, D., Adv. Mater., 5, p. 144 (1993).Google Scholar
[8] Tuttle, J. R., Contreras, M. A., Bode, M. H., Niles, D., Albin, D. S., Maston, R., Gabor, A. M., Tennant, A. L., Duda, A., Noufi, R., J. Appl. Phys., 77, p. 153 (1995).Google Scholar
[9] Nishitani, M., Negami, T., Terauchi, M., Hirao, T., Jpn. J. Appl. Phys., 31, p. 192 (1992).Google Scholar
[10] Mickelsen, R. A., Chen, W. S., Proc. 7th Int. Conf. Ternary and Multinary Compounds, Sunowmass, p.39 (1986).Google Scholar
[11] Stolt, L., Bodegard, M., Heldstrom, J., Kessler, J., Ruckh, M., Velthaus, K. O., Schock, H. W., Proc. 11h Photovolt. Solar Energy Conf, p. 120 (1992).Google Scholar
[12] Nishitani, M., Negami, T., Wada, T., Thin Solid Films 258, p.313 (1995).Google Scholar
[13] Kohara, N., Negami, T., Nishitani, M., Wada, T., Jpn. J. Appl. Phys., 34, pL1141 (1995).Google Scholar