Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T19:29:24.661Z Has data issue: false hasContentIssue false

The Replacement of Titanium by Zirconium in Ceramics for Plutonium Immobilization

Published online by Cambridge University Press:  21 March 2011

M.W.A. Stewart
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, NSW 2234, Australia
B.D. Begg
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, NSW 2234, Australia
E.R. Vance
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, NSW 2234, Australia
K. Finnie
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, NSW 2234, Australia
H. Li
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, NSW 2234, Australia
G.R. Lumpkin
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, NSW 2234, Australia
K.L. Smith
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, NSW 2234, Australia
W.J. Weber
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA.
S. Thevuthasan
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99352, USA.
Get access

Abstract

Zirconates and titanates, based on the nominal baseline composition developed for the Plutonium Immobilization Project (PIP), have been prepared with and without process impurities. The titanates form pyrochlore as the major phase and the zirconates form a defectfluorite. Little, if any, of each impurity is accommodated in the defect-fluorite and powellite, kimzeyite, a spinel and a silicate glass appear as extra phases in this ceramic. In the titanates the pyrochlore incorporates more impurities, with the remainder being accomodated in zirconolite and a small amount of silicate glass. At extremly high levels of impurities, traces of magnetoplumbite, perovskite, and loveringite were found. The defect-fluorite zirconate phase is more radiation damage resistant than the titanate pyrochlore, though the secondary phases in the zirconate will reduce the radiation damage resistance of zirconate monoliths. To produce a dense product the oxide-route zirconate required sintering temperatures of about 1550°C, 200°C higher than that required for the titanate. Silicate impurities reduce the sintering temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Begg, B.D., Hess, N.J., McCready, D.E., Thevuthasan, S. and Weber, W.J., J. Nucl. Mater. 289, 188193 (2001).Google Scholar
2. Gong, W.L., Lutze, W. and Ewing, R.C., J. Nucl. Mater. 277, 239249 (2000).Google Scholar
3. Gong, W.L., Naz, S. Lutze, W. Busch, R. Prinja, A. and Stoll, W. J. Nucl. Mater. 295, 295299 (2001).Google Scholar
4. Minervini, L. Grimes, R.W. and Sickafus, K. J. Am. Ceram. Soc., 83, 1873–78 (2000).Google Scholar
5. Ebbinghaus, B.B., Cicero-Herman, C., Gray, L. and Shaw, H. Plutonium Immobilization Project Baseline formulation, (Lawrence Livermore National Laboratory report UCRL-ID-133089, Feb. 1999) pp. 142.Google Scholar
6. Stewart, M.W.A., Vance, E.R., Jostsons, A. Finnie, K. Day, R.A., and Ebbinghaus, B.B., “Atmosphere Processing Effects on Titanate Ceramics Designed for Plutonium Disposition”, Scientific Basis for Nuclear Waste Management XXV, MRS, Boston, Nov. 2001, in pressGoogle Scholar
7. Lumpkin, G.R., J. Nucl. Mater. 289, 133166 (2000).Google Scholar
8. Vance, E.R., Jostsons, A. Moricca, S. M.Stewart, W.A., Day, R.A., Begg, B.D., Hambley, M.J., Hart, K.P., and Ebbinghaus, B.B., Ceram. Trans. 93, 323329 (1999), ed., J. C. Marra and G. T. Chandler Am. Ceram. Soc., Westerville, OH, USA.Google Scholar
9. Stewart, M.W.A., Vance, E.R., Day, R.A., Leung, S.. Brownscombe, A. Carter, M.L., and Ebbinghaus, B.B., Ceram. Trans. 107, 569576 (2000), ed., G..T. Chandler and X.. Feng, Am. Ceram. Soc., Westerville, OH, USA.Google Scholar
10. Stewart, M.W.A., Vance, E.R., Day, R.A., and Ebbinghaus, B.B., “Disposition of Impurities in Pyrochlore/Zirconolite Based Ceramics”, in HLW and Pu Immobilization Meeting, Ed. Meis, C. (CEA-INSTN Saclay, DCC/DPE/SPCP-Saclay 1999) pp. 4748.Google Scholar
11. Ryerson, F.J., Ebbinghaus, B.B., Krikorian, O. and Konyenburg, R. Van, Saturation of Impurity-rich phases in a cerium-substituted pyrochlore-rich titanate ceramic, (Lawrence Livermore National Laboratory report UCRL-ID-139093, May 2000) pp 1647.Google Scholar
12. Smith, K.L, Zaluzec, N.J. and Lumpkin, G.R., J. Nucl. Mater. 250, 3652 (1997).Google Scholar
13. Thevuthasan, S. Peden, C.H. F. Engelhard, M.H., Baer, D.R., Herman, G.S., Jiang, W. Liang, Y. and Weber, W.J., Nucl. Instrum. and Methods, A 420, (1999) 8189.Google Scholar
14. Standards Australia, Refractories and refractory materials – Physical test methods, Method 5: The determination of density porosity and water adsorption; AS 1774.5 (1989).Google Scholar
15. Vance, E.R., Watson, J.N., Carter, M.L., Day, R.A., and Begg, B.D., J. Am. Ceram. Soc. 84, [1[ 141144 (2001).Google Scholar
16. Begg, B.D., Vance, E.R., Hunter, B.A. and Hanna, J.V., J. Mater. Res. 13, 31813190 (1998).Google Scholar
17. Zhang, Y. Hart, K.P., Begg, B.D., Aly, Z. Keegan, L. Day, R.A., Brownscombe, A. and M.Stewart, W.A., “Durability of Pu-doped Zirconate and Titanate Ceramics for Pu Disposition”, Scientific Basis for Nuclear Waste Management XXV, MRS, Boston, Nov. 2001, in press.Google Scholar
18. Weber, W.J., Wald, J.W. and Matzke, H. J. Nucl. Mater. 138 196204 (1986).Google Scholar