Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-12T01:47:16.448Z Has data issue: false hasContentIssue false

Single-Atom Diffusion on Silver and Gold Surfaces

Published online by Cambridge University Press:  15 February 2011

Ghyslain Boisvert
Affiliation:
Département de physique et Groupe de recherche en physique et technologie des couches Minces, Université de Montréal, Case postale 6128, Succursale A, Montréal, Québec, Canada H3C 3J7
Laurent J. Lewis
Affiliation:
Département de physique et Groupe de recherche en physique et technologie des couches Minces, Université de Montréal, Case postale 6128, Succursale A, Montréal, Québec, Canada H3C 3J7
Get access

Abstract

We present the results of a detailed Molecular-dynamics study of single-atom diffusion on the surfaces Ag (100) and (111), and Au (111), using the embedded-atom method to describe the interactions between the atoms. We find that diffusion is Arrhenius-like up to temperatures corresponding to a large fraction of the activation energy. We demonstrate, in addition, that an excellent description of the rate of diffusion is provided by a simple transition-state theory, together with parameters that derive directly from the static potential-energy surface. The Model predicts very accurately the activation energies, while the prefactor for diffusion is obtained within a factor of 2, a discrepancy we attribute to the neglect, in the Model, of the details of the structure of the surface. At higher temperatures, diffusion becomes clearly non-Arrhenius, and the model fails.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for instance Evolution of Surface and Thin Film Microstructure, ed. by Atwater, H.A., Chason, E., Grabów, M.H., and Lagally, M.G., MRS Proceedings vol. 280 (1993).Google Scholar
2. Chen, C and Tsong, T.T., Phys. Rev. B 41, 12403 (1990).Google Scholar
3. Wang, S.C. and Ehrlich, G., Surf. Sci. 239, 301 (1990).Google Scholar
4. Foiles, S.M., Baskes, M.I., and Daw, M.S., Phys. Rev. B 33, 7983 (1986).Google Scholar
5. Truhlár, D.G., Isaacson, A.D., and Garrett, B.C., in Theory of Chemical Reaction Dynamics, vol. IV, ed. by Baer, M. (CRC, Boca Raton, 1985), p. 65.Google Scholar
6. Sanders, D.E. and DePristo, A.E., Surf. Sci. Lett. 264, L169 (1992).Google Scholar
7. Liu, C.L. and Adams, J.B., Surf. Sci. 265, 262 (1992).Google Scholar
8. Adams, J.B., Foiles, S.M., and Wolfer, W.G., J. Mater. Res. 4, 102 (1989).Google Scholar
9. Sandy, A.R., Mochrie, S.G.J., Zehner, D.M., Huang, K.G., and Gibbs, D., Phys. Rev. B 43, 4667 (1991).Google Scholar
10. Jones, G.W., Marcano, J.M., Norskov, J.K. and Venables, J.A., Phys. Rev. Lett. 65, 3317 (1990).Google Scholar
11. Binh, V.T. and Melinon, P., Surf. Sci. 161, 234 (1985).Google Scholar
12. Chen, C. and Tsong, T.T., Phys. Rev. Lett. 64, 3147 (1990).Google Scholar