Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-09T07:40:18.552Z Has data issue: false hasContentIssue false

Soft reverse current-voltage characteristics in V2O5 nanofiber junctions

Published online by Cambridge University Press:  15 March 2011

Gyu-Tae Kim
Affiliation:
Max-Planck Institut für Festkörperforschung, Heisenbergstr. 1, D-70569, Stuttgart, Germany
Jörg Muster
Affiliation:
Max-Planck Institut für Festkörperforschung, Heisenbergstr. 1, D-70569, Stuttgart, Germany
Marko Burghard
Affiliation:
Max-Planck Institut für Festkörperforschung, Heisenbergstr. 1, D-70569, Stuttgart, Germany
Siegmar Roth
Affiliation:
Max-Planck Institut für Festkörperforschung, Heisenbergstr. 1, D-70569, Stuttgart, Germany
Get access

Abstract

V2O5 nanofibers showed the rectifying current-voltage characteristics under an asymmetric contact configuration at room temperature, indicating the formation of a Schottky diode. The ideality factors as a Schottky diode were estimated to be 6.1 at the forward bias and 1.4 at the reverse bias. The larger current at the reverse bias defined by the negative voltage at the metal electrode may originate from the contribution of the tunneling via field emission or thermionic field emission. The ultimate geometric size of nanofibers enhances the influence of the tunneling mechanism and modifies the nano-scale Schottky diode, requiring more understanding in designing the nano-scale electronic devices with the metal contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saito, R., Dresselhaus, G., and Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, (Imperial College Press, London, 1998).Google Scholar
2. Gabriel, J.-C. P., and Davidson, P., Adv. Mater. 12, 9 (2000).Google Scholar
3. Duan, X. F., and Lieber, C. M., Adv. Mater. 12, 298 (2000).Google Scholar
4. Choi, W. B., Chu, J. U., Jeong, K. S., Bae, E. J., Lee, J.-W., Kim, J.-J., and Lee, J.-O., Appl. Phys. Lett. 22, 3696 (2001).Google Scholar
5. Tans, S. J., Verschueren, A. R. M., and Dekker, C., Nature, 393, 49 (1998).Google Scholar
6. Kim, G. T., Muster, J., Krstic, V., Park, J. G., Park, Y. W., Roth, S. and Burghard, M., Appl. Phys. Lett. 76, (2000)Google Scholar
7. Duan, X., Huang, Y., Cui, Y., Wang, J., and Lieber, C. M., Nature, 409, 66 (2001).Google Scholar
8. Yao, T., Oka, Y., and Yamamoto, N., Mat. Res. Bull. 27, 669 (1992).Google Scholar
9. Muster, J., Kim, G. T., Krstic, V., Park, J. G., Park, Y. W., Roth, S. and Burghard, M., Adv. Mater. 12, 420 (2000).Google Scholar
10. Livage, J., Chem. Mater. 3, 526 (1991).Google Scholar
11. Bullot, J., Gallais, O., Gauthier, M., and Livage, J., Appl. Phys. Lett. 36, 986 (1980).Google Scholar
12. Sze, S. M., Semiconductor Devices and Physics and Technology (Wiley, New York, 1985).Google Scholar
13. Rhoderick, E. H., Metal-semiconductor contacts, (Clarendon Press, Oxford, 1978).Google Scholar
14. Yao, Z., Postma, H. W. Ch., Balents, L., Dekker, C., Nature, 402, 273 (1999).Google Scholar
15. Leonard, F., Tersoff, J., Phys. Rev. Lett. 83, 5174 (1999).Google Scholar
16. Yu, A. Y. C., Solid-St. Elect. 13, 239 (1970).Google Scholar
17. Padovani, F. A., Semiconductors and semimetals ed. by Willardson, & Beer, , 6A, Chap. 2, (Academic Press, New York, 1971).Google Scholar
18. Pablo, P. J. de, Graugnard, E., Walsh, B., Andres, R. P., Datta, S., Reifenberger, R., Appl. Phys. Lett. 74, 323 (1999).Google Scholar